dAbr_dV
- dAbr_dV(dFf_dV1, dFf_dV2, dFt_dV1, dFt_dV2, Ff, Ft)
dAbr_dV()
- Partial derivatives of squared flow magnitudes w.r.t voltage.[DAF_DV1, DAF_DV2, DAT_DV1, DAT_DV2] = ... DABR_DV(DFF_DV1, DFF_DV2, DFT_DV1, DFT_DV2, FF, FT) returns four matrices containing partial derivatives of the square of the branch flow magnitudes at "from" & "to" ends of each branch w.r.t voltage components (either angle and magnitude, respectively, if polar, or real and imaginary, respectively, if cartesian) for all buses, given the flows and flow sensitivities. Flows could be complex current or complex or real power. Notation below is based on complex power. The following explains the expressions used to form the matrices: Let Af refer to the square of the apparent power at the "from" end of each branch, Af = abs(Sf).^2 = Sf .* conj(Sf) = Pf.^2 + Qf.^2 then ... Partial w.r.t real power, dAf/dPf = 2 * diag(Pf) Partial w.r.t reactive power, dAf/dQf = 2 * diag(Qf) Partial w.r.t V1 & V2 (e.g. Va and Vm, or Vr and Vi) dAf/dV1 = dAf/dPf * dPf/dV1 + dAf/dQf * dQf/dV1 dAf/dV2 = dAf/dPf * dPf/dV2 + dAf/dQf * dQf/dV2 Derivations for "to" bus are similar. Examples: %% squared current magnitude [dFf_dV1, dFf_dV2, dFt_dV1, dFt_dV2, Ff, Ft] = ... dIbr_dV(branch(il,:), Yf, Yt, V); [dAf_dV1, dAf_dV2, dAt_dV1, dAt_dV2] = ... dAbr_dV(dFf_dV1, dFf_dV2, dFt_dV1, dFt_dV2, Ff, Ft); %% squared apparent power flow [dFf_dV1, dFf_dV2, dFt_dV1, dFt_dV2, Ff, Ft] = ... dSbr_dV(branch(il,:), Yf, Yt, V); [dAf_dV1, dAf_dV2, dAt_dV1, dAt_dV2] = ... dAbr_dV(dFf_dV1, dFf_dV2, dFt_dV1, dFt_dV2, Ff, Ft); %% squared real power flow [dFf_dV1, dFf_dV2, dFt_dV1, dFt_dV2, Ff, Ft] = ... dSbr_dV(branch(il,:), Yf, Yt, V); dFf_dV1 = real(dFf_dV1); dFf_dV2 = real(dFf_dV2); dFt_dV1 = real(dFt_dV1); dFt_dV2 = real(dFt_dV2); [dAf_dV1, dAf_dV2, dAt_dV1, dAt_dV2] = ... dAbr_dV(dFf_dV1, dFf_dV2, dFt_dV1, dFt_dV2, Ff, Ft);
See also
dIbr_dV()
,dSbr_dV()
.For more details on the derivations behind the derivative code used in MATPOWER information, see:
[TN2] R. D. Zimmerman, "AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation", MATPOWER Technical Note 2, February 2010. [Online]. Available: https://matpower.org/docs/TN2-OPF-Derivatives.pdf doi: 10.5281/zenodo.3237866