qps_glpk

qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)

qps_glpk() - Linear Program Solver based on GLPK - GNU Linear Programming Kit.

[X, F, EXITFLAG, OUTPUT, LAMBDA] = ...
    QPS_GLPK(H, C, A, L, U, XMIN, XMAX, X0, OPT)
[X, F, EXITFLAG, OUTPUT, LAMBDA] = QPS_GLPK(PROBLEM)
A wrapper function providing a standardized interface for using
GLPK to solve the following LP (linear programming) problem:

    min C'*X
     X

subject to

    L <= A*X <= U       (linear constraints)
    XMIN <= X <= XMAX   (variable bounds)

Inputs (all optional except H, C, A and L):
    H : IGNORED dummy matrix of quadratic cost coefficients
        for QP problems, which GLPK does not handle
    C : vector of linear cost coefficients
    A, L, U : define the optional linear constraints. Default
        values for the elements of L and U are -Inf and Inf,
        respectively.
    XMIN, XMAX : optional lower and upper bounds on the
        X variables, defaults are -Inf and Inf, respectively.
    X0 : optional starting value of optimization vector X (NOT USED)
    OPT : optional options structure with the following fields,
        all of which are also optional (default values shown in
        parentheses)
        verbose (0) - controls level of progress output displayed
            0 = no progress output
            1 = some progress output
            2 = verbose progress output
        glpk_opt - options struct for GLPK, value in verbose
                overrides these options
    PROBLEM : The inputs can alternatively be supplied in a single
        PROBLEM struct with fields corresponding to the input arguments
        described above: H, c, A, l, u, xmin, xmax, x0, opt

Outputs:
    X : solution vector
    F : final objective function value
    EXITFLAG : exit flag, 1 - optimal, <= 0 - infeasible, unbounded or other
    OUTPUT : output struct with the following fields:
        errnum - GLPK errnum output arg
        status - GKPK status output arg
        runtime - solver run time in seconds
    LAMBDA : struct containing the Langrange and Kuhn-Tucker
        multipliers on the constraints, with fields:
        mu_l - lower (left-hand) limit on linear constraints
        mu_u - upper (right-hand) limit on linear constraints
        lower - lower bound on optimization variables
        upper - upper bound on optimization variables

Note the calling syntax is almost identical to that of GLPK. The main
difference is that the linear constraints are specified with A, L, U
instead of A, B, Aeq, Beq.

Calling syntax options:
    [x, f, exitflag, output, lambda] = ...
        qps_glpk([], c, A, l, u, xmin, xmax, x0, opt)

    x = qps_glpk([], c, A, l, u)
    x = qps_glpk([], c, A, l, u, xmin, xmax)
    x = qps_glpk([], c, A, l, u, xmin, xmax, x0)
    x = qps_glpk([], c, A, l, u, xmin, xmax, x0, opt)
    x = qps_glpk(problem), where problem is a struct with fields:
                    H, c, A, l, u, xmin, xmax, x0, opt
                    all fields except 'c', 'A' and 'l' or 'u' are optional
    x = qps_glpk(...)
    [x, f] = qps_glpk(...)
    [x, f, exitflag] = qps_glpk(...)
    [x, f, exitflag, output] = qps_glpk(...)
    [x, f, exitflag, output, lambda] = qps_glpk(...)

Example: (based on example from 'doc linprog')
    c = [-5; -4; -6];
    A = [ 1  -1   1;
         -3  -2  -4;
          3   2   0];
    l = [-Inf; -42; -Inf];
    u = [20; Inf; 30];
    xmin = [0; 0; 0];
    opt = struct('verbose', 2);
    [x, f, s, out, lambda] = qps_glpk([], c, A, l, u, xmin, [], [], opt);

See also qps_master(), glpk.