qps_clp
- qps_clp(H, c, A, l, u, xmin, xmax, x0, opt)
qps_clp()
- Quadratic Program Solver based on CLP - COIN-OR Linear Programming.[X, F, EXITFLAG, OUTPUT, LAMBDA] = ... QPS_CLP(H, C, A, L, U, XMIN, XMAX, X0, OPT) [X, F, EXITFLAG, OUTPUT, LAMBDA] = QPS_CLP(PROBLEM) A wrapper function providing a standardized interface for using CLP to solve the following QP (quadratic programming) problem: min 1/2 X'*H*X + C'*X X subject to L <= A*X <= U (linear constraints) XMIN <= X <= XMAX (variable bounds) Inputs (all optional except H, C, A and L): H : matrix (possibly sparse) of quadratic cost coefficients C : vector of linear cost coefficients A, L, U : define the optional linear constraints. Default values for the elements of L and U are -Inf and Inf, respectively. XMIN, XMAX : optional lower and upper bounds on the X variables, defaults are -Inf and Inf, respectively. X0 : optional starting value of optimization vector X (NOT USED) OPT : optional options structure with the following fields, all of which are also optional (default values shown in parentheses) verbose (0) - controls level of progress output displayed 0 = no progress output 1 = some progress output 2 = verbose progress output clp_opt - options struct for CLP, value in verbose overrides these options PROBLEM : The inputs can alternatively be supplied in a single PROBLEM struct with fields corresponding to the input arguments described above: H, c, A, l, u, xmin, xmax, x0, opt Outputs: X : solution vector F : final objective function value EXITFLAG : exit flag, 1 - optimal, -1 - infeasible, -2 - unbounded -3 - max iterations/time exceeded OUTPUT : struct with fields exitflag - raw CLP exit flag: 0 - optimal, 1 - infeasible, 2 - unbounded, 3 - max iterations/time exceeded status - string with explanation of exitflag (iter - depending on build of solver this may contain the number of iterations) LAMBDA : struct containing the Langrange and Kuhn-Tucker multipliers on the constraints, with fields: mu_l - lower (left-hand) limit on linear constraints mu_u - upper (right-hand) limit on linear constraints lower - lower bound on optimization variables upper - upper bound on optimization variables Note the calling syntax is almost identical to that of CLP. The main difference is that the linear constraints are specified with A, L, U instead of A, B, Aeq, Beq. Calling syntax options: [x, f, exitflag, output, lambda] = ... qps_clp(H, c, A, l, u, xmin, xmax, x0, opt) x = qps_clp(H, c, A, l, u) x = qps_clp(H, c, A, l, u, xmin, xmax) x = qps_clp(H, c, A, l, u, xmin, xmax, x0) x = qps_clp(H, c, A, l, u, xmin, xmax, x0, opt) x = qps_clp(problem), where problem is a struct with fields: H, c, A, l, u, xmin, xmax, x0, opt all fields except 'c', 'A' and 'l' or 'u' are optional x = qps_clp(...) [x, f] = qps_clp(...) [x, f, exitflag] = qps_clp(...) [x, f, exitflag, output] = qps_clp(...) [x, f, exitflag, output, lambda] = qps_clp(...) Example: (problem from from https://v8doc.sas.com/sashtml/iml/chap8/sect12.htm) H = [ 1003.1 4.3 6.3 5.9; 4.3 2.2 2.1 3.9; 6.3 2.1 3.5 4.8; 5.9 3.9 4.8 10 ]; c = zeros(4,1); A = [ 1 1 1 1; 0.17 0.11 0.10 0.18 ]; l = [1; 0.10]; u = [1; Inf]; xmin = zeros(4,1); x0 = [1; 0; 0; 1]; opt = struct('verbose', 2); [x, f, s, out, lambda] = qps_clp(H, c, A, l, u, xmin, [], x0, opt);
See also
qps_master()
,clp
.