nlp_consfcn
- nlp_consfcn(om, x, dhs, dgs)
nlp_consfcn()
- Evaluates nonlinear constraints and their Jacobian.[H, G] = NLP_CONSFCN(OM, X) [H, G, DH, DG] = NLP_CONSFCN(OM, X) [H, G, DH, DG] = NLP_CONSFCN(OM, X, DHS, DGS) Constraint evaluation function nonlinear constraints, suitable for use with MIPS, FMINCON, etc. Computes constraint vectors and their gradients. Inputs: OM : Opt-Model object X : optimization vector DHS : (optional) sparse matrix with tiny non-zero values specifying the fixed sparsity structure that the resulting DH should match DGS : (optional) sparse matrix with tiny non-zero values specifying the fixed sparsity structure that the resulting DG should match Outputs: H : vector of inequality constraint values G : vector of equality constraint values DH : (optional) inequality constraint gradients, column j is gradient of H(j) DG : (optional) equality constraint gradients Examples: [h, g] = nlp_consfcn(om, x); [h, g, dh, dg] = nlp_consfcn(om, x); [...] = nlp_consfcn(om, x, dhs, dgs);
See also
nlp_costfcn()
,nlp_hessfcn()
.