MAKESBUS Builds the vector of complex bus power injections. SBUS = MAKESBUS(BASEMVA, BUS, GEN) SBUS = MAKESBUS(BASEMVA, BUS, GEN, MPOPT, VM) SBUS = MAKESBUS(BASEMVA, BUS, GEN, MPOPT, VM, SG) returns the vector of complex bus power injections, that is, generation minus load. Power is expressed in per unit. If the MPOPT and VM arguments are present it evaluates any ZIP loads based on the provided voltage magnitude vector. If VM is empty, it assumes nominal voltage. If SG is provided, it is a complex ng x 1 vector of generator power injections in p.u., and overrides the PG and QG columns in GEN, using GEN only for connectivity information. [SBUS, DSBUS_DVM] = MAKESBUS(BASEMVA, BUS, GEN, MPOPT, VM) With two output arguments, it computes the partial derivative of the bus injections with respect to voltage magnitude, leaving the first return value SBUS empty. If VM is empty, it assumes no voltage dependence and returns a sparse zero matrix. See also MAKEYBUS.
0001 function [Sbus, dSbus_dVm] = makeSbus(baseMVA, bus, gen, mpopt, Vm, Sg) 0002 %MAKESBUS Builds the vector of complex bus power injections. 0003 % SBUS = MAKESBUS(BASEMVA, BUS, GEN) 0004 % SBUS = MAKESBUS(BASEMVA, BUS, GEN, MPOPT, VM) 0005 % SBUS = MAKESBUS(BASEMVA, BUS, GEN, MPOPT, VM, SG) 0006 % returns the vector of complex bus power injections, that is, generation 0007 % minus load. Power is expressed in per unit. If the MPOPT and VM arguments 0008 % are present it evaluates any ZIP loads based on the provided voltage 0009 % magnitude vector. If VM is empty, it assumes nominal voltage. If SG is 0010 % provided, it is a complex ng x 1 vector of generator power injections in 0011 % p.u., and overrides the PG and QG columns in GEN, using GEN only for 0012 % connectivity information. 0013 % 0014 % [SBUS, DSBUS_DVM] = MAKESBUS(BASEMVA, BUS, GEN, MPOPT, VM) 0015 % With two output arguments, it computes the partial derivative of the 0016 % bus injections with respect to voltage magnitude, leaving the first 0017 % return value SBUS empty. If VM is empty, it assumes no voltage dependence 0018 % and returns a sparse zero matrix. 0019 % 0020 % See also MAKEYBUS. 0021 0022 % MATPOWER 0023 % Copyright (c) 1996-2016, Power Systems Engineering Research Center (PSERC) 0024 % by Ray Zimmerman, PSERC Cornell 0025 % 0026 % This file is part of MATPOWER. 0027 % Covered by the 3-clause BSD License (see LICENSE file for details). 0028 % See https://matpower.org for more info. 0029 0030 %% define named indices into bus, gen matrices 0031 [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ... 0032 VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus; 0033 [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ... 0034 MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ... 0035 QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen; 0036 0037 %% default inputs 0038 if nargin < 5 0039 Vm = []; 0040 if nargin < 4 0041 mpopt = []; 0042 end 0043 end 0044 nb = size(bus, 1); 0045 0046 %% get load parameters 0047 Sd = makeSdzip(baseMVA, bus, mpopt); 0048 0049 if nargout == 2 0050 Sbus = []; 0051 if isempty(Vm) 0052 dSbus_dVm = sparse(nb, nb); 0053 else 0054 dSbus_dVm = -(spdiags(Sd.i + 2 * Vm .* Sd.z, 0, nb, nb)); 0055 end 0056 else 0057 %% compute per-bus generation in p.u. 0058 on = find(gen(:, GEN_STATUS) > 0); %% which generators are on? 0059 gbus = gen(on, GEN_BUS); %% what buses are they at? 0060 ngon = size(on, 1); 0061 Cg = sparse(gbus, (1:ngon)', 1, nb, ngon); %% connection matrix 0062 %% element i, j is 1 if 0063 %% gen on(j) at bus i is ON 0064 if nargin > 5 && ~isempty(Sg) 0065 Sbusg = Cg * Sg(on); 0066 else 0067 Sbusg = Cg * (gen(on, PG) + 1j * gen(on, QG)) / baseMVA; 0068 end 0069 0070 %% compute per-bus loads in p.u. 0071 if isempty(Vm) 0072 Vm = ones(nb, 1); 0073 end 0074 Sbusd = Sd.p + Sd.i .* Vm + Sd.z .* Vm.^2; 0075 0076 %% form net complex bus power injection vector 0077 %% (power injected by generators + power injected by loads) 0078 Sbus = Sbusg - Sbusd; 0079 end