GETN Returns the number of variables, constraints or cost rows. N = OM.GETN(SET_TYPE) N = OM.GETN(SET_TYPE, NAME) N = OM.GETN(SET_TYPE, NAME, IDX) Returns either the total number of variables/constraints/cost rows or the number corresponding to a specified named block. Examples: N = om.getN('var') : total number of variables N = om.getN('lin') : total number of linear constraints N = om.getN('nle') : total number of nonlin equality constraints N = om.getN('nli') : total number of nonlin inequality constraints N = om.getN('qdc') : total number of quadratic cost rows N = om.getN('nlc') : total number of general nonlinear cost rows N = om.getN('cost') : total number of legacy cost rows (in N) N = om.getN('var', name) : # of variables in named set N = om.getN('lin', name) : # of linear constraints in named set N = om.getN('nle', name) : # of nonlin eq cons. in named set N = om.getN('nli', name) : # of nonlin ineq cons. in named set N = om.getN('qdc', name) : # of quadratic cost rows in named set N = om.getN('nlc', name) : # of gen nonlin cost rows in named set N = om.getN('cost', name) : # of legacy cost rows (in N) in named set N = om.getN('var', name, idx) : # of variables in indexed named set See also OPT_MODEL.
0001 function N = getN(om, set_type, name, idx) 0002 %GETN Returns the number of variables, constraints or cost rows. 0003 % N = OM.GETN(SET_TYPE) 0004 % N = OM.GETN(SET_TYPE, NAME) 0005 % N = OM.GETN(SET_TYPE, NAME, IDX) 0006 % 0007 % Returns either the total number of variables/constraints/cost rows 0008 % or the number corresponding to a specified named block. 0009 % 0010 % Examples: 0011 % N = om.getN('var') : total number of variables 0012 % N = om.getN('lin') : total number of linear constraints 0013 % N = om.getN('nle') : total number of nonlin equality constraints 0014 % N = om.getN('nli') : total number of nonlin inequality constraints 0015 % N = om.getN('qdc') : total number of quadratic cost rows 0016 % N = om.getN('nlc') : total number of general nonlinear cost rows 0017 % N = om.getN('cost') : total number of legacy cost rows (in N) 0018 % N = om.getN('var', name) : # of variables in named set 0019 % N = om.getN('lin', name) : # of linear constraints in named set 0020 % N = om.getN('nle', name) : # of nonlin eq cons. in named set 0021 % N = om.getN('nli', name) : # of nonlin ineq cons. in named set 0022 % N = om.getN('qdc', name) : # of quadratic cost rows in named set 0023 % N = om.getN('nlc', name) : # of gen nonlin cost rows in named set 0024 % N = om.getN('cost', name) : # of legacy cost rows (in N) in named set 0025 % N = om.getN('var', name, idx) : # of variables in indexed named set 0026 % 0027 % See also OPT_MODEL. 0028 0029 % MATPOWER 0030 % Copyright (c) 2008-2017, Power Systems Engineering Research Center (PSERC) 0031 % by Ray Zimmerman, PSERC Cornell 0032 % 0033 % This file is part of MATPOWER. 0034 % Covered by the 3-clause BSD License (see LICENSE file for details). 0035 % See https://matpower.org for more info. 0036 0037 if nargin < 3 0038 N = om.(set_type).N; 0039 else 0040 if isfield(om.(set_type).idx.N, name) 0041 if nargin < 4 0042 idx = {}; 0043 end 0044 s1 = substruct('.', name, '()', idx); 0045 N = subsref(om.(set_type).idx.N, s1); 0046 else 0047 N = 0; 0048 end 0049 end