Home > matpower5.0 > t > t_opf_dc_glpk.m

t_opf_dc_glpk

PURPOSE ^

T_OPF_DC_GLPK Tests for DC optimal power flow using GLPK solver.

SYNOPSIS ^

function t_opf_dc_glpk(quiet)

DESCRIPTION ^

T_OPF_DC_GLPK  Tests for DC optimal power flow using GLPK solver.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 function t_opf_dc_glpk(quiet)
0002 %T_OPF_DC_GLPK  Tests for DC optimal power flow using GLPK solver.
0003 
0004 %   MATPOWER
0005 %   $Id: t_opf_dc_glpk.m 2498 2014-12-17 19:57:03Z ray $
0006 %   by Ray Zimmerman, PSERC Cornell
0007 %   Copyright (c) 2004-2014 by Power System Engineering Research Center (PSERC)
0008 %
0009 %   This file is part of MATPOWER.
0010 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0011 %
0012 %   MATPOWER is free software: you can redistribute it and/or modify
0013 %   it under the terms of the GNU General Public License as published
0014 %   by the Free Software Foundation, either version 3 of the License,
0015 %   or (at your option) any later version.
0016 %
0017 %   MATPOWER is distributed in the hope that it will be useful,
0018 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0019 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0020 %   GNU General Public License for more details.
0021 %
0022 %   You should have received a copy of the GNU General Public License
0023 %   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.
0024 %
0025 %   Additional permission under GNU GPL version 3 section 7
0026 %
0027 %   If you modify MATPOWER, or any covered work, to interface with
0028 %   other modules (such as MATLAB code and MEX-files) available in a
0029 %   MATLAB(R) or comparable environment containing parts covered
0030 %   under other licensing terms, the licensors of MATPOWER grant
0031 %   you additional permission to convey the resulting work.
0032 
0033 if nargin < 1
0034     quiet = 0;
0035 end
0036 
0037 algs  = [1; 1; 2];
0038 if have_fcn('octave')
0039     v = ver('Octave');
0040     if vstr2num(v.Version) < 3.007
0041         dual = [0; 1; 1];
0042     else
0043         dual = [1; 2; 1];
0044     end
0045 else
0046     dual = [0; 2; 1];
0047 end
0048 num_tests = 23 * length(algs);
0049 
0050 t_begin(num_tests, quiet);
0051 
0052 [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
0053     VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
0054 [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...
0055     MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...
0056     QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;
0057 [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
0058     TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
0059     ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
0060 
0061 casefile = 't_case9_opf';
0062 if quiet
0063     verbose = 0;
0064 else
0065     verbose = 0;
0066 end
0067 if have_fcn('octave')
0068     s1 = warning('query', 'Octave:load-file-in-path');
0069     warning('off', 'Octave:load-file-in-path');
0070 end
0071 
0072 s2 = warning('query', 'MATLAB:singularMatrix');
0073 
0074 mpopt = mpoption('out.all', 0, 'verbose', verbose);
0075 mpopt = mpoption(mpopt, 'opf.dc.solver', 'GLPK');
0076 
0077 %% run DC OPF
0078 if have_fcn('glpk')
0079     for k = 1:length(algs)
0080         mpopt = mpoption(mpopt, 'glpk.opts.lpsolver', algs(k), 'glpk.opts.dual', dual(k));
0081         methods = {
0082             'primal simplex',
0083             'dual simplex',
0084             'interior',
0085         };
0086     t0 = sprintf('DC OPF (GLPK %s): ', methods{k});
0087 
0088     %% set up indices
0089     ib_data     = [1:BUS_AREA BASE_KV:VMIN];
0090     ib_voltage  = [VM VA];
0091     ib_lam      = [LAM_P LAM_Q];
0092     ib_mu       = [MU_VMAX MU_VMIN];
0093     ig_data     = [GEN_BUS QMAX QMIN MBASE:APF];
0094     ig_disp     = [PG QG VG];
0095     ig_mu       = (MU_PMAX:MU_QMIN);
0096     ibr_data    = (1:ANGMAX);
0097     ibr_flow    = (PF:QT);
0098     ibr_mu      = [MU_SF MU_ST];
0099     ibr_angmu   = [MU_ANGMIN MU_ANGMAX];
0100 
0101     %% get solved DC power flow case from MAT-file
0102     load soln9_dcopf;       %% defines bus_soln, gen_soln, branch_soln, f_soln
0103 
0104     %% run OPF
0105     t = t0;
0106     [baseMVA, bus, gen, gencost, branch, f, success, et] = rundcopf(casefile, mpopt);
0107     t_ok(success, [t 'success']);
0108     t_is(f, f_soln, 3, [t 'f']);
0109     t_is(   bus(:,ib_data   ),    bus_soln(:,ib_data   ), 10, [t 'bus data']);
0110     t_is(   bus(:,ib_voltage),    bus_soln(:,ib_voltage),  3, [t 'bus voltage']);
0111     t_is(   bus(:,ib_lam    ),    bus_soln(:,ib_lam    ),  3, [t 'bus lambda']);
0112     t_is(   bus(:,ib_mu     ),    bus_soln(:,ib_mu     ),  2, [t 'bus mu']);
0113     t_is(   gen(:,ig_data   ),    gen_soln(:,ig_data   ), 10, [t 'gen data']);
0114     t_is(   gen(:,ig_disp   ),    gen_soln(:,ig_disp   ),  3, [t 'gen dispatch']);
0115     t_is(   gen(:,ig_mu     ),    gen_soln(:,ig_mu     ),  3, [t 'gen mu']);
0116     t_is(branch(:,ibr_data  ), branch_soln(:,ibr_data  ), 10, [t 'branch data']);
0117     t_is(branch(:,ibr_flow  ), branch_soln(:,ibr_flow  ),  3, [t 'branch flow']);
0118     t_is(branch(:,ibr_mu    ), branch_soln(:,ibr_mu    ),  2, [t 'branch mu']);
0119 
0120     %%-----  run OPF with extra linear user constraints & costs  -----
0121     %% two new z variables
0122     %%      0 <= z1, P2 - P1 <= z1
0123     %%      0 <= z2, P2 - P3 <= z2
0124     %% with A and N sized for DC opf
0125     mpc = loadcase(casefile);
0126     mpc.A = sparse([1;1;1;2;2;2],[10;11;13;11;12;14],[-1;1;-1;1;-1;-1],2,14);
0127     mpc.u = [0; 0];
0128     mpc.l = [-Inf; -Inf];
0129     mpc.zl = [0; 0];
0130 
0131     mpc.N = sparse([1;2], [13;14], [1;1], 2, 14);   %% new z variables only
0132     mpc.fparm = ones(2,1) * [1 0 0 1];              %% w = r = z
0133     mpc.H = sparse(2,2);                            %% no quadratic term
0134     mpc.Cw = [1000;1];
0135 
0136     t = [t0 'w/extra constraints & costs 1 : '];
0137     [r, success] = rundcopf(mpc, mpopt);
0138     t_ok(success, [t 'success']);
0139     t_is(r.gen(1, PG), 116.15974, 5, [t 'Pg1 = 116.15974']);
0140     t_is(r.gen(2, PG), 116.15974, 5, [t 'Pg2 = 116.15974']);
0141     t_is(r.var.val.z, [0; 0.3348], 4, [t 'user vars']);
0142     t_is(r.cost.usr, 0.3348, 4, [t 'user costs']);
0143 
0144     %% with A and N sized for AC opf
0145     mpc = loadcase(casefile);
0146     mpc.A = sparse([1;1;1;2;2;2],[19;20;25;20;21;26],[-1;1;-1;1;-1;-1],2,26);
0147     mpc.u = [0; 0];
0148     mpc.l = [-Inf; -Inf];
0149     mpc.zl = [0; 0];
0150 
0151     mpc.N = sparse([1;2], [25;26], [1;1], 2, 26);   %% new z variables only
0152     mpc.fparm = ones(2,1) * [1 0 0 1];              %% w = r = z
0153     mpc.H = sparse(2,2);                            %% no quadratic term
0154     mpc.Cw = [1000;1];
0155 
0156     t = [t0 'w/extra constraints & costs 2 : '];
0157     [r, success] = rundcopf(mpc, mpopt);
0158     t_ok(success, [t 'success']);
0159     t_is(r.gen(1, PG), 116.15974, 5, [t 'Pg1 = 116.15974']);
0160     t_is(r.gen(2, PG), 116.15974, 5, [t 'Pg2 = 116.15974']);
0161     t_is(r.var.val.z, [0; 0.3348], 4, [t 'user vars']);
0162     t_is(r.cost.usr, 0.3348, 4, [t 'user costs']);
0163 
0164     t = [t0 'infeasible : '];
0165     warning('off', 'MATLAB:singularMatrix');
0166     %% with A and N sized for DC opf
0167     mpc = loadcase(casefile);
0168     mpc.A = sparse([1;1], [10;11], [1;1], 1, 14);   %% Pg1 + Pg2
0169     mpc.u = Inf;
0170     mpc.l = 600;
0171     [r, success] = rundcopf(mpc, mpopt);
0172     t_ok(~success, [t 'no success']);
0173 
0174     end
0175 else
0176     t_skip(num_tests, 'GLPK not available');
0177 end
0178 
0179 if have_fcn('octave')
0180     warning(s1.state, 'Octave:load-file-in-path');
0181 end
0182 warning(s2.state, 'MATLAB:singularMatrix');
0183 
0184 t_end;
0185 
0186 %% borrowed from have_fcn()
0187 function num = vstr2num(vstr)
0188 % Converts version string to numerical value suitable for < or > comparisons
0189 % E.g. '3.11.4' -->  3.011004
0190 pat = '\.?(\d+)';
0191 [s,e,tE,m,t] = regexp(vstr, pat);
0192 b = 1;
0193 num = 0;
0194 for k = 1:length(t)
0195     num = num + b * str2num(t{k}{1});
0196     b = b / 1000;
0197 end

Generated on Mon 26-Jan-2015 15:21:31 by m2html © 2005