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Introduction

The purpose of this Developer’s Manual is to provide an understanding of the internal design of MATPOWER for users
who wish to help with the development of MATPOWER or for those who would like to customize, modify or add to the
functionality of MATPOWER in any way.

The MATPOWER User’s Manual, on the other hand, is your starting point if you simply want to use MATPOWER without
modification or customization.

For reference documentation on each class and function in MATPOWER, see the MATPOWER Reference Manual.

1.1 Development Environment

MATPOWER is implemented in the Matlab language, designed for scientific computing. It requires either MATLAB ©, a
commercial product from The MathWorks, or the free, open-source GNU Octave to run.

MATPOWER and its related software packages are developed as open-source projects on GitHub under the MATPOWER
Development GitHub organization. Some projects are included in others using git subrepo.

Table 1.1 provides an overview of the various repositories and their relationships to each other. Note that the main
matpower repository contains all of the others as subrepos, except for matpower-extras, which is, however, included
when you download the ZIP file for a numbered MATPOWER release.

Table 1.1: MATPOWER GitHub Repositories

Repository Description

matpower Main MATPOWER repository. Depends on mptest , mips, and mp-opt-model, which are
included as subrepos, along with most, and mp-docs-shared.

mptest Functions for implementing unit testing in MATLAB or Octave, with generalized

mechanism for testing for optional functionality and corresponding versions, i.e.
have_feature(). Required by all of the other projects.

mips Matrower Interior Point Solver (MIPS), a nonlinear primal-dual interior point solver
used as the default solver for AC OPF problems. Also includes a wrapper function for
several linear equation solvers. Depends on mptest.

mp-opt-model MP-Opt-Model, an easy-to-use, object-oriented interface for building and solving math-
ematical programming and optimization problems. Also includes a unified interface for
calling numerous LP, QP, mixed-integer and nonlinear solvers, with the ability to switch
solvers simply by changing an input option. Depends on mptest and mips.

continues on next page
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Table 1.1 — continued from previous page

Repository Description

most Matpower Optimal Scheduling Tool (MOST), a framework for solving generalized
steady-state electric power scheduling problems. Depends on mptest, mp-opt-model and
matpower.

matpower-extras MATPOWER Extras, a collection of contributed and/or unsupported MATPOWER-related

functions and packages. Note that some of the extras have their own separate repositories
and are actually included here as subrepos. Depends on mptest and matpower.

mp-docs-shared Defines common resources used for the Sphinx documentation and included as a subrepo
in docs/sphinx/source in all of the projects.

In general, each repository has two permanent branches, master and release, where release points to the latest
stable release and master contains any unreleased but hopefully stable updates. Each numbered release also has an
associated git tag.

1.2 Conventions

Because MATPOWER is intended to run unmodified on either MaTLAB or GNU Octave, it is important to stick to syntax
and functionality that are supported by both.

We use classdef syntax supported by both to define classes and, in methods, we use obj as the variable name
representing the object. Most of the classes are defined in the mp package/namespace.

All classes, methods, properties, and functions include a help section that can be accessed by the help and doc com-
mands and processed by Sphinx to produce HTML and PDF reference documentation. For a class, it summarizes the
purpose and overall functionality provided by the class along with lists of the properties and methods. For a function
or method, it describes the inputs, outputs and what the function or method does. The run_mp () function and the mp.
task class provide examples of this reference documentation. Hint: Click the GitHub icon in the upper right corner
of the reference manual page to see the source.

All functionality should be covered by at least one of the automated tests.

See the MATPOWER Contributors Guide for more information on contributing to the MATPOWER project.

2 Chapter 1. Introduction
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This section introduces and summarizes the mathematical notation used throughout this manual.

Notation

This notation is consistent with what was used in the MP-Element technical note, MATPOWER Technical Note 5 [TN5]
where you can find more detail.

Styles

x, 0 real scalars

x, 0 complex scalars

x,0 real vectors

X, 0 complex vectors

X, 0 real matrices

X,0 complex matrices

r,X,x,x, X,X variables, functions

xr,x,xz,%x,X,X constants, parameters1

% X,X selected rows of interest of x, x, X, X, respectively’
Operators

Ma ] diagonal matrix with vector a on the diagonal

AT (non-conjugate) transpose of matrix A

a*, a*, A* complex conjugate of a, a, and A, respectively

R{a}, S{a}
an

A’fl

a®, aP
f(x), f(x)
£, £,

real and imaginary parts of a, respectively

element-wise exponent® for vector a

matrix exponent® for matrix A

element-wise exponent® for vector b and matrix B, respectively
scalar, vector functions of x, respectively

transpose of gradient of f, Jacobian of f, respectively, w.r.t. «
Hessian of f, Jacobian of fmTA, respectively, w.r.t.

Constants and Dimensions

! Constants and parameters are underlined, with the following exceptions: constants e and j, p, g, m and n when used as dimensions, and 4, j,

and k as indices.

2 Obtained by multiplying by matrix J or J. k-
3 Superscripts may also be used as indices, indicated by context.
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e, j constants, e is base of natural log (~ 2.71828), j is v/—1
Ny Ny Nop n’; number of elements, nodes, ports, ports for element &, respectively
Wsses, Ty T dimension of vector X, v, z, respectively.
1,,[>1,.] n x 1 vector of all ones, n x n identity matrix
0 appropriately-sized vector or matrix of all zeros
Variables
V5 complex voltage at node/port ¢
Ui, Wy real and imaginary parts of voltage at node/port ¢, v; = u; + jw;
Vi, 0; voltage magnitude and angle at node/port i, v; = v;e/%
v column vector of complex voltages v;
e column vector v with elements scaled to unit magnitude, e = el
u, w column vectors of real (u;) and imaginary (w;) parts of voltage, respectively, v = u + jw
v,0 column vectors of voltage magnitudes v; and angles 6;, respectively, v = [>v._]e = [>v._] e/?
A column vector of inverse of complex voltages V%, A=v!
z column vector of real non-voltage state variables z;
z column vector of complex non-voltage state variables z;
Fipo column vectors of real and imaginary parts of z = z,. + j2;
Parameters
Iy matrix formed by taking selected rows, indexed by vector k, from an identity matrix*
Y AC model admittance matrix
L linear coefficient (of z) for affine complex current injections
i vector of constant complex current injections
M linear coefficient (of v) for affine complex power injections
N linear coefficient (of z) for affine complex power injections
s vector of constant complex power injections
B DC model susceptance matrix
K linear coeflicient (of z) for affine active power injections
D vector of constant active power injections
C element-node incidence matrix for a given port
D element-variable incidence matrix for a given state variable
A combined incidence matrix A = [ % g ]

4 Often used simply as J without the subscript.

Chapter 2. Notation



Architecture Overview

A new object-oriented MATPOWER core architecture (MP-Core), designed around the concept of a generic system ele-
ment,' was introduced in MATPOWER 8.0, along with two frameworks for employing this new MP-Core in MATPOWER.
This chapter gives an overview of this architecture.

MATPOWER’s primary function is to solve steady-state electric power system simulation and optimization problems,
such as power flow, continuation power flow and optimal power flow. At the top level of MP-Core is a task object
that constructs the various layers of modeling for the desired problem type and formulation, solves the problem, and
propogates the solution back through the modeling layers to the user.

This architecture employs an explicit three-layer modeling structure designed to decouple from one another (1) the
user-visible element parameters and quantities, (2) the network connections, states and flows, and (3) the mathematical
problem being solved. The three layers are referred to, resepectively, as the data, network, and mathematical (or
math) modeling layers as shown in Figure 3.1.

defines user-visible element

i et ey parameters and quantities

defines network connections and
network model layer states (e.g. voltages, injections) and
relationship between states and flows

defines mathematical model to solve

T2 TRl Ve (e.g. variables, costs, constraints)

Figure 3.1: MATPOWER Model Layers

The data model layer is further decoupled from any particular data format, such as the legacy MATPOWER case struct
(mpc) and case file formats, by introducing a data conversion service (data model converter) to convert data between
the data model and specific external data formats.

! Hence the name MP-Element used early on in the development cycle.
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Each modeling layer, plus the data conversion service, is organized around a collection of element objects, one for
each element type, enclosed in a container object. An element type corresponds to a particular type of device (e.g.
bus, generator, transmission line) or some other attribute or service (e.g. transmission interface, reserve requirement)
in the system. This structure provides extraordinary flexibility by allowing the user to customize the environment by
adding new, or modifying existing, element types independently from the rest.

3.1 MATPOWER Object Instances

In any given MATPOWER run, a set of object instances are created and used to solve the problem. The structure of these
object instances in the object-oriented MATPOWER core architecture (MP-Core) is show in Figure 3.2. The classes for
the various objects may be specific to (1) the type of problem being solved, (2) the problem formulation, (3) the data
source, and for individual elements, (4) the type of element. The labels in the white circles in the figure are used by
convention throughout the codebase in variable and class names for the corresponding type of object.

task

' Y ' N\ 4 N\ 'é N\
data model data model @ network model mathematical

converter model
—

data network
model model
eIement element

~ === ~—_ @@= ~— @@=
1 1 1 1
| | 1 1
1 1 1
| | |
| 1 1

data model
converter
element

\4

\4

i
SR
data model data network math
converter model model » model
element element element element
~ @ ===/ ~— @@= ~— ===

- J - J A\ J - J

\ 4
\ 4

Figure 3.2: MATPOWER Object Instances

A single task object is created to manage the overall process. The task is specific to the type of problem being solved,
e.g. power flow (PF), continuation power flow (CPF), or optimal power flow (OPF), and it has a run() method that
sets up and solves the correspnding problem. For example, the following runs an OPF for the 9-bus case.

mpopt = mpoption('verbose', 2); % set MATPOWER options
task = mp.task_opf(Q); % create task object for OPF
task.run('case9', mpopt); % create and run task for 'case9’

The steps shown in Listing 3.1 are roughly equivalent to those performed when the task is run. It defines the classes
used to construct each of the model objects, as well as the data model converter. In this example, the classes are defined
explicitly, but in the actual code they are returned by calls to corresponding methods, allowing them to be overridden
by subclasses.

The task then creates the data model converter object that corresponds to the data source provided, followed by the three
main model objects. The data model is created from the specified data source with the help of the data model converter,
and is then used to create the network model. The math model is then created using both the data and network models.
After solving itself, the math model is also used to update the states of the other two model objects.

6 Chapter 3. Architecture Overview
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Listing 3.1: Basic steps performed by the task’s run() method" 72

% define classes used to construct model objects and data model converter
dmc_class = @mp.dm_converter_mpc2; % data model convert class, MATPOWER case format v2

dm_class = @mp.data_model_opf; % data model class for OPF
nm_class = @mp.net_model_acp; % network model class for AC polar

mm_class = @mp.math_model_opf_acps; % math model class for AC polar power OPF

% create objects

dmc = dmc_class().build(Q); % create data model converter
dm = dm_class().build('case9', dmc); % create data model for 'case9'
nm = nm_class() .build(dm); % create network model

mm = mm_class() .build(nm, dm, mpopt); % create math model

% find solution
opt = mm.solve_opts(nm, dm, mpopt);
mm.solve(opt);

get solver options

solve math model

nm = mm.network_model_x_soln(nm); update network model state with soln
nm.port_inj_soln(); use network model to compute flows
dm = mm.data_model_update(nm, dm, mpopt); % update data model with soln

R R R R

Each of the four main objects created by the task consists of a container object holding a set of corresponding element
objects. That is, the data model contains a set of data model elements, the network model, a set of network model
elements, etc., one for each element type. Each element type is associated with a name, that is a valid struct field name
used to identify the corresponding element in each container object. The list of element classes for a given container
is defined by the container class, but can be modified after the container’s construction and before calling its build ()
method.

The build process of a given container object simply loops through its set of elements, building each one, possibly
with access to the respective element of the other model layers. For example, when building the network model (nm),
a network model element (nme) is constructed for each type of element, pulling its data from the corresponding data
model element (dme). For example, the network model element for generators pulls its data from the data model element
for generators.

This process is described in more detail in Chapters 5-8.

3.2 MATPOWER Class Hierarchies

A summary of the class inheritance structure in MP-Core is represented in Figure 3.3, showing class name conventions,
with abstract classes displayed with a single border and concrete classes with a double border. A significant portion of
MP-Core functionality is implemented in abstract base classes, greatly reducing the effort involved in customization.

Subclasses in these hierarchies are distinguished from one another by various attributes. For example, task classes are
distinguished by the type of task or problem being solved (e.g. PF, CPF, OPF), data model converters by the data format
(e.g. MATPOWER case v2, PSS/E RAW), data models by the task, network models by the formulation (e.g. DC, AC
polar, AC cartesian), mathematical models by the task and formulation. That goes for both the container classes and
their respective element classes, which are also distinguished by the corresponding element type (e.g. bus, generator,
transmission line).

The mp.element_container is a mixin class providing shared functionality for the four container types mentioned
above, implementing a set of elements, which can be addressed by both index and name and supplying the properties
elements and element_classes.

2 This code should execute successfully from the command line without modification.

3.2. MATPOWER Class Hierarchies 7
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mp.element_container
STV

mp.task_<task>

Top-Level
Container

mp.nm_element

—

mp.form

mp.net_model

| mp.data_model

i

| mp.dm_converter |

i

mp.form_<form>

mp.dm_converter_<format> mp.data_model_<task> mp.net_model_<form>
ntaners (@9 ()
Containers
Data Model Converter Data Model Network|Model Mathematical Model
mp.dmc_element mp.dm_element mp.mm_element
mp.dme_<element> mp.nme_<element> mp.mme_<element>

mp.dmce_<element>_<format> mp.dme_<element>_<task> mp.nme_<element>_<form> mp.mme_<element>_<task>_<form>

oments @) @ @ &
Elements
<format> = e.g. mpc2, psse, etc. <element> = e.g. bus, gen, load, etc. <form> = e.g. dc, acp (AC polar), acc (AC cartesian), etc. <task> = e.g. pf, cpf, opf, etc.

Figure 3.3: MATPOWER Class Hierarchies

8 Chapter 3. Architecture Overview
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Other mixin classes are also sometimes used when certain functionality and implementation is shared across classes in
ways that do not match the primary inheritance paths.

3.3 Two MATPOWER Frameworks

MATPOWER currently provides two approaches to utilizing the object-oriented MATPOWER core architecture.

The first, which we call the legacy MATPOWER framework, wraps MP-Core objects inside the legacy user interface,
with its inherent limitations, in order to provide backward compatibility for legacy user customization mechanisms.
This allows MP-Core to be used internally to implement all of the legacy PF, CPF and OPF functionality and, even
more importantly, to be validated by MATPOWER’s extensive legacy test suite.

The second approach, which we call the flexible MATPOWER framework, involves an object-oriented design with a
new customization architecture, able to make the full scope of flexibility of MP-Core accessible to the end user. For
example, this framework is required to take advantage of new modeling capabilities to add multiphase unbalanced
and hybrid models. It provides its own version of the top-level user functions, namely run_pf(), run_cpf(), and
run_opf () (note the underscores in the names).

One of the primary differences between the two frameworks is that the legacy framework converts the MATPOWER case
data to internal format, removing offline equipment and renumbering buses consecutively using the legacy ext2int ()
function, before creating the task object and running it. After solving, it converts the case back to the external format
using int2ext () before returning the result. This conversion is required for the legacy user callback mechanisms, but
is not necessary for MP-Core itself, so it is not included in the flexible framework.

3.4 MATPOWER Customization

The primary motivation behind the design of MP-Core was to facilitate customization, both for the end user and for
the developer who wants to add new capabilities to MATPOWER itself. Given the object-oriented architecture, this is
possible by simply subclassing existing classes to modify or override their behavior or adding completely new classes,
which can often inherit significant functionality from existing abstract base classes.

The flexible MATPOWER framework includes a mechanism for defining and using MATPOWER extensions (see Chap-
ter 9.3). A MATPOWER extension is essentially a collection of modifications and additions to be made to the set default
classes used to construct the task, model and model element objects.

3.3. Two MATPOWER Frameworks 9



Task Object

The task object is the one that builds and manages the model objects in order to solve the problem of interest. The
mp . task base class implements much of the functionality, with PF, CPF and OPF subclasses, namely mp.task_pf,
mp . task_cpf, and mp.task_opf, respectively, specifying the model classes to use and implementing other problem-
specific functionality. The typical usage pattern is simply to construct the task object for the problem of interest, then
call its run() method, passing in a struct of input data, a MATPOWER options struct, and an optional cell array of
MATPOWER extensions.

4.1 Running a Task

Most of the action related to the task object occurs in the run() method. In a typical case, as illustrated in Listing 3.1,
it simply builds the objects for the three model layers sequentially, solves the math model, and uses the results to update
the network and data models. However, the actual run() method also allows for each model layer to iterate with a
modified instance of the model as shown in the flowchart in Figure 4.1. This can be used, for example, to iteratively
update and re-solve a power flow in order to automatically satisfy the generator reactive power limits.

4.2 Building Model and Converter Objects

Each of the build steps, marked with the stars in Figure 4.1, consists of the following sub-steps:

1. Determine the class for the corresponding container object. There is a default, defined by a task method, but it
can be overridden by a task subclass, or modified by user options or extensions.

2. Construct the container object.

3. Determine the set of classes for the individual element objects. The container class defines the defaults, but they
can also be modified by user options or extensions.

4. Call the container object’s build () method to construct the element objects and complete the build process.

10
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/ input data /
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preprocess . build data o build
input data g model converter o data model
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. modify o build
i data model g network model
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i network model g math model
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g math model o solver options
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math model
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solved math
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model ok?
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update network model
with solution

Y

solved network
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model ok?
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update data model
with solution

Y

solved data

model ok?

Yes

post process
result

BNED

Figure 4.1: Flowchart of task run() method

4.2. Building Model and Converter Objects
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4.3 lterative Execution

As mentioned above, the run() method allows for an iterative solution at any of the three modeling layers. This is
accomplished by overridding the next_dm(), next_nm(), or next_mm() methods, respectively, for the data, network
or math models. By default, these methods return an empty matrix, indicating that iteration should terminate. On the
other hand, if a modified model object is returned, it triggers a new iteration with the modified model.

This feature is used by both PF and CPF to implement enforcement of certain constraints, such as generator reactive
power limits.

4.4 Other Methods

A task also has a print_soln() method for pretty printing the solution to the console and a save_soln() method
for saving the saved case to a file.

12 Chapter 4. Task Object



Data Model Object

The data model is essentially the internal representation of the input data provided by the user for the given simulation
or optimization run and the output presented back to the user upon completion. It corresponds roughly to the mpc
(MATPOWER case) and results structs used throughout the legacy MATPOWER implementation, but encapsulated in
an object with additional functionality. It includes tables of data for each type of element in the system.

5.1 Data Models

A data model object is primarily a container for data model element objects. All data model classes inherit from mp.
data_model and therefore also from mp.element_container, and may be task-specific, as shown in Figure 5.1.
For a simple power flow problem, mp.data_model is used directly as a concrete class. For CPF and OPF problems,
subclasses are used. In the case of CPF, mp.data_model_cpf encapsulates both the base and the target cases. In the
case of the OPF, mp.data_model_opf includes additional input data, such as generator costs, and output data, such
as nodal prices and shadow prices on line flow contraints.

mp.element_container

i

mp.data_model

mp.data_model_cpf mp.data_model_opf

Figure 5.1: Data Model Classes

By convention, data model variables are named dm and data model class names begin with mp.data_model.

13
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5.1.1 Building a Data Model

There are two steps to building a data model. The first is to call the constructor of the desired data model class, without
arguments. This initializes the element_classes property with a list of data model element classes. This list can be
modified before the second step, which is to call the build() method, passing in the data and a corresponding data
model converter object.

dmc = mp.dm_converter_mpc2().build(Q);
dm = mp.data_model();
dm.build('case9', dmc);

The build () method proceeds through the following stages sequentially, looping through each element at every stage.
1. Create — Instantiate each element object and add it to the elements property of the dm.
2. Import — Use the corresponding data model converter element to read the data into each element’s table(s).

3. Count — Determine the number of instances of each element present in the data, store it in the element’s nr
property, and remove the element type from elements if the count is 0.

4. Initialize — Initialize the (online/offline) status of each element and create a mapping of ID to row index in the
ID2i element property.

5. Update status — Update status of each element based on connectivity or other criteria and define element prop-
erties containing number and row indices of online elements (n and on), indices of offline elements (o£ff), and
mapping (i2on) of row indices to corresponding entries in on or off.

6. Build parameters — Extract/convert/calculate parameters as necessary for online elements from the original data
tables (e.g. p.u. conversion, initial state, etc.) and store them in element-specific properties.

5.1.2 System Level Parameters

There are a few system level parameters such as the system per-unit power base that are stored in data model proper-
ties. Balanced single-phase model elements, typical in transmission systems, use an MVA base found in base_mva.
Unbalanced three-phase model elements, typical in distribution systems, use a kVA base found in base_kva. Models
with both types of elements, therefore, use both properties.

5.1.3 Printing a Data Model

The mp.data_model provides a pretty_print () method for displaying the model parameters to a pretty-printed text
format. The result can be output either to the console or to a file.

The output is organized into sections and each element type controls its own output for each section. The default
sections are:

* cnt - count, number of online, offline, and total elements of this type
* sum - summary, e.g. total amount of capacity, load, line loss, etc.
* ext - extremes, e.g. min and max voltages, nodal prices, etc.

* det - details, table of detailed data, e.g. voltages, prices for buses, dispatch, limits for generators, etc.

14 Chapter 5. Data Model Object
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5.2 Data Model Elements

A data model element object encapsulates all of the input and output data for a particular element type. All data model
element classes inherit from mp.dm_element and each element type typically implements its own subclass. A given
data model element object contains the data for all instances of that element type, stored in one or more fable data
structures.' So, for example, the data model element for generators contains a table with the generator data for all
generators in the system, where each table row corresponds to an individual generator.

By convention, data model element variables are named dme and data model element class names begin with mp . dme.
Figure 5.2 shows the inheritance relationships between a few example data model element classes. Here the mp.
dme_bus, mp . dme_gen and mp . dme_load classes are used for PF and CPF runs, while the OPF requires task-specific
subclasses of each.

mp.dm_element

mp.dme_bus mp.dme_gen .- mp.dme_load
mp.dme_bus_opf mp.dme_gen_opf .. mp.dme_load_opf

Figure 5.2: Data Model Element Classes

5.2.1 Data Tables

Typically, a data model element has at least one main table, stored in the tab property. Each row in the table corresponds
to an individual element and the columns are the parameters. In general, MATPOWER attempts to follow the parameter
naming conventions outlined in The Common Electric Power Transmission System Model (CTM) [CTM]. The following
parameters (table columns) are shared by all data model elements.

* uid - positive integer serving as a unique identifier for the element
* name — optional string identifier for the element
e status — O or 1, on/off-line status of the element

 source_uid — implementation specific (e.g. sometimes used to map back to a specific record in the source data)

lImplementt:d using the built-in table and included mp_table classes, respectively, under MarLaB and GNU Octave. See also
mp_table_class().
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5.2.2 Properties

The table below includes additional properties, besides the main table tab, found in all data model elements.

Table 5.1: Data Model Element Properties

Property  Description

nr number of rows in the table, i.e. the fofal number of elements of the type

n number of online elements of the type

on vector of row indices of online elements

off vector of row indices of offline elements

ID2i M x 1 vector mapping IDs to row indices, where M is the largest ID value

i2on n, X 1 vector mapping row indices to the corresponding index into the on vector (for online elements)
or off vector (for offline elements)

tab main data table

5.2.3 Methods

A data model element also has a name () method that returns the name of the element type under which it is entered in
the data model (container) object. For example, the name returned for the mp . dme_gen class is 'gen', which means
the corresponding data model element object is found in dm.elements.gen.

There are also methods named label () and labels() which return user visible names for singular and plural in-
stances of the element used when pretty-printing. For mp.dme_gen, for example, these return 'Generator' and
'Generators', respectively.

Note: Given that these name and label methods simply return a character array, it might seem logical to implement
them as Constant properties instead of methods, but this would prevent the value from being overridden by a subclass,
in effect precluding the option to create a new element type that inherits from an existing one.

The main_table_var_names() method returns a cell array of variable names defining the columns of the main data
table. These are used by the corresponding data model converter element to import the data.

There are also methods that correspond to the build steps for the data model container object, count(),
initialize(), init_status(), update_status(), and build_params(), as well as those for pretty printing
output, pretty_print(), etc.

5.2.4 Connections

As described in the Network Model Object (page 22) section, the network model consists of elements with nodes, and
elements with ports that are connected to those nodes. The corresponding data model elements, on the other hand,
contain the information defining how these port-node connections are made in the network model, for example, to link
generators and loads to single buses, and branches to pairs of buses.

A connection in this context refers to a mapping of a set of ports of an element of type A (e.g. from bus and to bus
ports of a branch) to a set of nodes created by elements of type B (e.g. bus). We call the node-creating elements
junction elements. A single connection links all type A elements to corresponding type B junction elements. For
example, a three-phase branch could define two connections, a from bus connection and a fo bus connection, where
each connection defines a mapping of 3 ports per branch to the 3 nodes of each corresponding bus.

A data model element class defines its connections by implementing a couple of methods. The cxn_type () method
returns the name of the junction element(s) for the connection(s). The cxn_idx_prop () method returns the name(s)
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of the property(ies) containing the indices of the corresponding junction elements. For example, if cxn_type() for a
branch element class returns 'bus' and cxn_idx_prop() returns {'fbus', 'tbus'}, that means it is defining two
connections, both to 'bus"' elements. The fbus and tbus properties of the branch object are each vectors of indices
into the set of 'bus' objects, and will be used automatically to generate the connectivity for the network model.

It is also possible to define a connection where the junction element type is instance-specific. For example, if you had
two types of buses, and a load element that could connect to either type, then each load would have to indicate both
which type of bus and which bus of that type it is connected to. This is done by having cxn_type () return a cell array
of the valid junction element type sand cxn_type_prop () return the name(s) of the property(ies) containing vector(s)
of indices into the junction element type cell array.

5.2. Data Model Elements 17



Data Model Converter Object

A data model converter provides the ability to convert data between a data model and a specific data source or format,
such as the PSS/E RAW format or version 2 of the MATPOWER case format. It is used, for example, during the import
stage of the data model build process.

6.1 Data Model Converters

A data model converter object is primarily a container for data model converter element objects. All data model con-
verter classes inherit from mp . dm_converter and therefore also from mp.element_container and they are specific
to the type or format of the data source, as shown in Figure 6.1. In this example, the PSS/E RAW format converter has
not yet been implemented, but is shown here for illustration.

mp.element_container

1

mp.dm_converter

mp.dm_converter_mpc2 mp.dm_converter_psse

Figure 6.1: Data Model Converter Classes

By convention, data model converter variables are named dmc and data model converter class names begin with mp.
dm_converter.

18



MATPOWER Developers’s Manual, Release 8.0

6.1.1 Building a Data Model Converter

A data model converter object is created in two steps. The first is to call the constructor of the desired data model
converter class, without arguments. This initializes the element_classes property with a list of data model converter
element classes. This list can be modified before the second step, which is to call the build() method, also without
parameters, which simply instantiates and adds the set of element objects indicated in element_classes. Once it has
been created, it is ready to be used for its two primary functions, namely import and export.

dmc = mp.dm_converter_mpc2();
dmc.buildQ;

6.1.2 Importing Data

The import () method is called automatically by the build () method of the data model object. It takes a data model
object and a data source and updates the data model by looping through its element objects and calling each element’s
own import () method to import the element’s data from the data source into the corresponding data model element.
For a MATPOWER case struct it would like like this.

mpc = loadcase('case9');
dm = dmc.import(dm, mpc);

6.1.3 Exporting Data

Conversely, the export () method takes the same inputs but returns an updated data source, once again looping through
its element objects and calling each element’s own export () method to export data from the corresponding data model
element to the respective portion of the data source.

[mpc = dmc.export(dm, mpc); ]

Calling export () without passing in a data source will initialize one from scratch.

[mpc = dmc.export(dm) ;

6.2 Data Model Converter Elements

A data model converter element object implements the functionality needed to import and export a particular element
type from and to a given data format. All data model converter element classes inherit from mp.dmc_element and
each element type typically implements its own subclass.

By convention, data model converter element variables are named dmce and data model converter element class names
begin with mp.dmce. Figure 6.1 shows the inheritance relationships between a few example data model converter
element classes. Here the PSS/E classes have not yet been implemented, but are shown here for illustration.
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mp.dmc_element

mp.dmce_bus e mp.dmce_gen
mp.dmce_bus_mpc2 mp.dmce_bus_psse || --- (| mp.dmce_gen_mpc2 mp.dmce_gen_psse

Figure 6.2: Data Model Converter Element Classes

6.2.1 Data Import Specifications

The default import () method for a data model converter element first calls the get_import_spec() method to get
a struct containing the specifications that define the details of the import process. This specification is then passed to
import_table_values() to import the data.

The import specifications include things like where to find the data in the data source, the number of rows, number of
columns, and possibly a row index vector for rows of interest,' and a map defining how to import each column of the
main data table.

This map vmap is a struct returned by the table_var_map() method with fields matching the table column names
for the corresponding data model element dme. For example, if vn contains a variable, that is column, name, then
vmap. (vn) = <value> defines how that data table column will be imported or initialized, as summarized in Table
6.1 for different types of values.

Table 6.1: Variable Map Values

<value> Description

{'IDs'} Assign consecutive IDs starting at 1.

{'col', c}or Copy the data directly from column c of data source, optionally scaling it by a numer-
{'col', c, sf}or ical scale factor sf, or by the value returned by the function handle sf_fcn, called as
{'col', c, sf_fcn} sf_fcn(dmce, vn).

{'cell', val} Create a cell array with each element initialized with val.

{'num', n} Create a numeric vector with each element initialized with numeric scalar n.
{"fen', ifn} or Assign the values returned by the import function handle in ifn, where the optional
{'"fcn', ifn, efn} efn is the corresponding export function. The import and export functions are called

as ifn(dmce, d, spec, vn) and efn(dmce, dme, d, spec, vn, ridx), re-
spectively, where d is the data source, spec is the import/export specification, and
ridx is an optional vector of row indices.

The table_var_map() in mp.dmc_element initializes each entry to {'col', []} by default, so subclasses only
need to assign vmap. (vn) {2} for columns that map directly from a column of the data source.

! For example, when extracting loads from a bus matrix, where only certain buses have corresponding loads.
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6.2.2 Data Export Specifications

The default export () method first calls the get_export_spec() method to get a struct containing the specifications
that define the details of the export process. This specification is then passed to export_table_values() to export
the data.

The export of data from a data model element back to the original data format is handled by the same variable map as
the input, by default.

The init_export_data() method is used to initialize the relevant output data structure before exporting to it, if the
data_exists() method returns false.
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Network Model Object

The network model defines the states of and connections between network elements, as well as the parameters and
functions defining the relationships between states and port injections. This network model with a unified structure is
the key to a flexible modular design where model elements can simply define a few parameters and all of the mathematics
involved in computing injections and their derivatives for a given state is handled automatically.

One of the unique features of the network model is that the network model object, which contains network model
elements, is a network model element itself. Each network model element can optionally define the following:

* nodes to serve as network connection points
* ports for connecting to network nodes
» states which fully capture the element’s operating condition

There are two types of states that make up the element’s full state variable x, voltage states v associated with each port,
and optional non-voltage states z. The network model object inherits from mp_idx_manager from MP-Opt-Model to
track and index the nodes, ports, and states added by its elements, and the corresponding voltage and non-voltage state
variables.

A given network model implements a specific network model formulation. Figure 7.1 shows the structure of an AC
network model for an element with n,, connection ports and n, non-voltage states.

The MP-Element technical note, MATPOWER Technical Note 5 [TN5], includes a lot more detail on the network model
and especially on the mathematics involved in the model formulations.

7.1 Network Model Formulations

Each concrete network model element class, including the container class, inherits from a specific subclass of mp . form.
That is, it implements a specific network model formulation. For example, Figure 7.2 shows the corresponding classes
for the three network model formulations currently implemented, (1) DC, (2) AC with cartesian voltage representation,
and (3) AC with polar voltage representation.

By convention, network model formulation class names begin with mp. form. It is the formulation class that defines
the network model’s parameters and methods for accessing them. It also defines the form of the state variables, real
or complex, and methods for computing injections as a function of the state, and in the case of nonlinear formulations,
corresponding derivatives as well.

All formulations share a common structure, illustrated in Figure 7.1, with ports, corresponding voltage states, non-
voltage states, and functions of predefined form for computing port injections from the state.
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Figure 7.1: AC Model for Element with n,, Ports
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mp.form_dc mp.form_acc mp.form_acp

Figure 7.2: Network Model Formulation Classes
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7.1.1 DC Formulation

For the DC formulation, the state vector x is real valued and the port injection function is defined in terms of active
power injections. The state begins with the n,, x 1 vector @ of voltage angles at the n,, ports, and may include an n, x 1
real vector of additional state variables z, for a total of n, state variables.

x = {0} (7.1)

z

The port injection function in this case defines the active power port injections as a linear function of a set of parameters
B, K and p, where B is an n,, X n,, susceptance matrix, K is an n,, X n, matrix coefficient for a linear power injection
function, and p is an n, X 1 constant power injection.

(7.2)

7.1.2 AC Formulations

For the AC formulations, the state vector x is complex valued and there are two port injection functions, one for complex
power injections and one for current injections, as shown in Figure 7.1. The state begins with the n, x 1 vector v of
complex voltages at the n,, ports, and may include an n, x 1 real vector of additional state variables z, for a total of ny
state variables.

x = {V] (7.3)

The port injection functions for the model, both complex power injection g (x) and complex current injection g (x),
are defined by three terms, a linear current injection component i/ (x), a linear power injection component s'"(x),

and an arbitrary nonlinear component, s™"(x) or i"/" (x), respectively.

s. The admittance matrix Y and linear power coefficient matrix M are n,, X n,, linear coeflicient matrices L and N
are 1, X Ny, and i and s are n,, x 1 vectors of constant current and power injections, respectively.

i"mx)=[Y L |x+i 7.4

(7.5)

Note that the arbitrary nonlinear injection component, represented by either ™! (x) or i”" (x), corresponds to a single

set of injections represented either as a complex power injection or as a complex current injection, but not both. Since
the functions represent the same set of injections, they are not additive components, but rather must be related to one
another by the following relationship.

nln(

sn,ln(X) _ [\V\] (inln(x))* (7.6)
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Complex Power Injections

Then the port injection function for complex power can be written as follows.

g%(0) = [V (i) "+ () + 5" (x)

. . 1.7
=[v] Xv+Lz+i)"+Mv+Nz+s+s""(x)
Complex Current Injections
Similarly, the port injection function for complex current can be written as follows.
I slin ~lin A K snin
x) =1"(x)+ | >s""(x A" +i""(x
g’ (x) (%) + [ (x) ] (%) (7.8)

=Yv+Lz+i+ ["Mv+Nz+s A" +i""(x)

The derivatives of s™" and i"'™ are assumed to be provided explicitly, and the derivatives of the other terms of (7.7)
and (7.8) are derived in [TN5].

7.2 Network Models

A network model object is primarily a container for network model element objects and is itself a network model
element. All network model classes inherit from mp.net_model and therefore also from mp.element_container,
mp_idx_manager, and mp.nm_element. Concrete network model classes are also formulation-specific, inheriting
from a corresponding subclass of mp . form as shown in Figure 7.3.

mp.nm_element mp.element_container mp_idx_manager
1 o
/ | \
/ ! \ mp.net_model
mp.form_dc mp.form_acc mp.form_acp

mp.net_model_ac

mp.net_model_dc mp.net_model_acc mp.net_model_acp

Figure 7.3: Network Model Classes

By convention, network model variables are named nm and network model class names begin with mp.net_model.
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7.2.1 Building a Network Model

A network model object is created in two steps. The first is to call the constructor of the desired network model class,
without arguments. This initializes the element_classes property with a list of network model element classes. This
list can be modified before the second step, which is to call the build () method, passing in the data model object.

nm = mp.net_model_acp();
nm.build(dm) ;

The build () method proceeds through the following stages sequentially, looping through each element at each stage.
1. Create — Instantiate each element object.

2. Count and add - For each element object, determine the number of online elements from the corresponding
data model element and, if nonzero, store it in the object and add the object to the elements property of the nm.

3. Add nodes — Allow each element to add network nodes, then add voltage variables for each node.
4. Add states — Allow each element to add non-voltage states, then add non-voltage variables for each state.

5. Build parameters — Construct the formulation-specific model parameters for each element, including mappings
of element port to network node and element non-voltage state to system non-voltage variable. Add ports to the
container object for each element to track per-element port indexing.

7.2.2 Node Types

Most problems require that certain nodes be given special treatment depending on their type. For example, in the power
flow problem, there is typically a single reference node, some PV nodes, with the rest being PQ nodes.

In the current design, each node-creating network model element class implements a node_types() method that
returns information about the types of the nodes it creates. The container object node_types() method assembles
that information for the full set of network nodes. It can also optionally, assign a new reference node if one does not
exist. There are also methods, namely set_node_type_ref(), set_node_type_pv(), set_node_type_pq(), for
setting the type of a network node and having the relevant elements update their corresponding data model elements.

7.3 Network Model Elements

A network model element object encapsulates all of the network model parameters for a particular element type. All
network model element classes inherit from mp.nm_element and also, like the container, from a formulation-specific
subclass of mp. form. Each element type typically implements its own subclasses, which are further subclassed per
formulation. A given network model element object contains the aggregate network model parameters for all online
instances of that element type, stored in the set of matrices and vectors that correspond to the formulation, e.g. B, K

So, for example, in a system with 1000 in-service transmission lines, the Y parameter in the corresponding AC network
model element object would be a 2000 x 2000 matrix for an aggregate 2000-port element, representing the 1000 two-
port transmission lines.

By convention, network model element variables are named nme and network model element class names begin with
mp . nme. Figure 7.4 shows the inheritance relationships between a few example network model element classes. Here
the mp .nme_bus_acp and mp.nme_gen_acp classes are used for all problems with an AC polar formulation, while
the AC cartesian and DC formulations use their own respective subclasses.
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mp.nm_element

mp.form_dc mp.form_acc mp.form_acp mp.nme_bus .- mp.nme_gen

AN

!
!
1
L

mp.nme_gen_ac

mp.nme_bus_dc mp.nme_bus_acc mp.nme_bus_acp .- mp.nme_gen_dc mp.nme_gen_acc mp.nme_gen_acp

Figure 7.4: Network Model Element Classes

7.3.1 Example Elements
Here are brief descriptions of the network models for a few simple element types. There are other elements, and the

point is that new elements are relatively simple to implement, simply by specifying the nodes, ports and states they
add, and the parameters that define the relationships between the states and the port injections.

Bus

A bus element inherits from mp .nme_bus and defines a single node per in-service bus, with no ports or non-voltage
states. So it has no model parameters.

Generator

A gen element is a 1-port element that inherits from mp .nme_gen and defines a single non-voltage state per in-service
generator to represent the power injection. It connects to the node corresponding to a particular bus. The only non-zero
parameters are K (DC) or N (AC), which are negative identity matrices, since the power injections (into the element)
are the negative of the generated power.

Branch

A branch element is a 2-port element that inherits from mp.nme_branch with no nodes or non-voltage states. It
connects to nodes corresponding to two particular buses. The only non-zero parameters are B and p (DC), or Y (AC).
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Load

A load element is a 1-port element that inherits from mp.nme_load with no ports or states. It connects to the node
corresponding to a particular bus. For a simple constant power load, the only non-zero parameters are p (DC) or s
(AC), equal to the power consumed by the load.

7.3.2 Building Element Parameters

Typically, a network model element builds parameters only for its in-service elements, stacking the corresponding
parameters into vectors and matrices, with one row per element of that type. For the DC formulation, these are the
three parameters B, K and p from Section 7.1.1. For the AC formulations they are the six parameters, Y, L, M, N,
i, and s from Section 7.1.2.

Take, for example, an AC model with two-port transmission lines modeled by a simple series admittance, where the
two ports are labeled with f and ¢. For line ¢ with series admittance y?, we have

ii 7 _ut Vi
1 Vs Vs Vi

The individual admittance parameters for the ny individual lines are then stacked as follows,

Y, = . , (7.10)
‘ Nk

Ys

to form the admittance matrix parameter Y that we see in (7.4) for the corresponding element object.

Y., -Y,
Y= { Y. v, ] (7.11)

Stacking the individual port current and voltage variables,

.1 1 1 1
A : i v
i i2 v V2
. f . t f t
lf = : y It = : , Vf = . y Vi = : ) (712)
M Nk Nk N
lf 1; i v Vi

results in the port injection currents from (7.8) for this aggregate element taking the form

gl (x) =imx)=| ¥ ] :Y{ M } =Yv. (7.13)
1t Vi

When building its parameters, each network model element object also defines an element-node incidence matrix C' for

each of its ports and an element-variable incidence matrix D for each non-voltage states. For example, a transmission

line element would define two C' matrices, one mapping branches to their corresponding from bus and the other to their

corresponding fo bus.
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7.3.3 Aggregation

Since the model parameters are consistent across all network model elements for a given formulation, and the connec-
tivity of the elements is captured in the C' and D incidence matrices for each element type, the network model object
can assemble the parameters from all elements into a single aggregate network model characterized by parameters of
the same form. This aggregate model can then be used to compute port or node injections from the aggregate system
state, as well as any needed derivatives of these injection functions.

For more details on how the aggregation is done, see [TN5].
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Mathematical Model Object

The mathematical model, or math model, formulates and defines the mathematical problem to be solved. That is, it
determines the variables, constraints, and objective that define the problem. This takes on different forms depending
on the task and the formulation.

Power Flow
The power flow problem involves solving a system of nonlinear equations for the vector a.

f(x)=0 (8.1)
For the DC version, the function f(x) is linear, so the problem takes the more specific form,

Az —b=0. (8.2)

Continuation Power Flow
The continuation power flow problem involves tracing the solution curve for a parameterized system of equations,
as the parameter A is varied.

flx,\) =0, (8.3)

Optimal Power Flow
The optimal power flow problem, on the other hand, is a constrained optimization problem of the form,

rnwin (x)
(

suchthat  g(x) = 8.4)

T <x

This reduces to a simple quadratic program (QP) for the DC OPF case,
min :I:TQ:B +c'z+k
v =

such that l<Ax<u (8.5
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8.1 Mathematical Models

A math model object is a container for math model element objects and it is also an MP-Opt-Model object. All
math model classes inherit from mp.math_model and therefore also from mp.element_container, opt_model,
and mp_idx_manager. Concrete math model classes are task and formulation specific as illustrated in Figure 8.1, and
sometimes inherit from abstract mix-in classes that are shared across tasks or formulations. These shared classes are
described further in Section 8.3.

mp.element_contain

mp.mm_shared_pfcpf ‘
N

T

mp.mm_shared_pfcpf_ac mp.mm_shared_pfcpf_dc

\/\ >
mp.mm_shared_pfcpf_acp
[>

mp.mm_shared_pfcpf_acps

/\N\

Figure 8.1: Math Model Classes

By convention, math model variables are named mm and math model class names begin with mp .math_model.

8.1.1 Building a Mathematical Model

A math model object is created in two steps. The first is to call the constructor of the desired math model class, without
arguments. This initializes the element_classes property with a list of math model element classes. This list can be
modified before the second step, which is to call the build() method, passing in the network and data model objects
and a MATPOWER options struct.

mm = mp.math_model_opf_acps();
mm.build(nm, dm, mpopt);

The build() method proceeds through the following stages sequentially, looping through each element for the last 3
stages.

1. Create — Instantiate each element object.
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2. Count and add - For each element object, determine the number of online elements from the corresponding
data model element and, if nonzero, add the object to the elements property of the mm.

3. Add auxiliary data — Add auxiliary data, e.g. network node types, for use by the model.

4. Add variables — Add variables and allow each element to add their own variables to the model.

5. Add constraints — Add constraints and allow each element to add their own constraints to the model.
6. Add costs — Add costs and allow each element to add their own costs to the model.

The adding of variables, constraints and costs to the model is done by the math model and model model element objects
using the interfaces provided by MP-Opt-Model.

8.1.2 Solving a Math Model

Once the math model build is complete and it contains the full set of variables, constraints and costs for the model, the
solver options are initialized by calling the solve_opts() method and then passed to the solve () method.

opt = mm.solve_opts(nm, dm, mpopt);
mm.solve(opt);

The solve () method, also inherited from MP-Opt-Model, invokes the appropriate solver based on the characteristics
of the model and the options provided.

8.1.3 Updating Network and Data Models

The solved math model can then be used to update the solved state of the network and data models by calling the
network_model_x_soln() and data_model_update () methods, respectively.

nm = mm.network_model_x_soln(nm);
dm = mm.data_model_update(nm, dm, mpopt);

The math model’s data_model_update() method cycles through the math model element objects, calling the
data_model_update() for each element.

8.2 Mathematical Model Elements

A math model element object typically does not contain any data, but only the methods that are used to build the math
model and update the corresponding data model element once the math model has been solved.

All math model element classes inherit from mp .mm_element. Each element type typically implements its own sub-
classes, which are further subclassed where necessary per task and formulation, as with the container class.

By convention, math model element variables are named mme and math model element class names begin with mp.
mme. Figure 8.2 shows the inheritance relationships between a few example math model element classes. Here the
mp .nme_bus_pf_acp and mp.nme_bus_opf_acp classes are used for PF and OPF problems, respectively, with an
AC polar formulation. AC cartesian and DC formulations use their own respective task-specific subclasses. And each
element type, has a similar set of task and formulation-specific subclasses, such as those for mp . mme_gen.
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Figure 8.2: Math Model Element Classes

8.2.1 Adding Variables, Constraints, and Costs

Both the mm container object and the mme element objects can add their own variables, costs and constraints to the
model.

For a standard optimal power flow, for example, the optimization variables are added by the container object, since
they are determined directly from state variables of the (container) network model object. Similarly, the nodal power
or current balance constraints are added by the container since they are built directly from the port injection functions
of the aggregate network model.

However, generator cost functions and any variables and constraints associated with piecewise linear generator costs
are added by the appropriate subclass of mp .mme_gen, since they relate only to generator model parameters. Similarly,
branch flow and branch angle difference constraints are added by the appropriate subclass of mp.mme_branch, since
they are specific to branches and are completely independent of other element types.

8.2.2 Updating Data Model Elements

The data in the data model is stored primarily in its individual element objects, so it makes sense that the individual math
model element objects would be responsible for extracting the math model solution data relevant to a given element and
updating the corresponding data model element. This updating is performed by the data_model_update () method.

The updating of each data model element is done in two steps. First data_model_update() calls
data_model_update_off() to handle any offline units (e.g. to zero out any solution values), then
data_model_update_on() to handle the online units.

For example, updating the branch power flows and shadow prices on the flow and angle difference limits in the branch
data model element is done by data_model_update_on() in the appropriate subclass of mp .mme_branch.
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8.3 Shared Classes

In some cases, there is code shared between math model classes across differnt tasks, e.g. PF and CPF. In order to avoid
code duplication, another hierarchy of abstract mix-in classes is used to implement methods for this shared functionality.
By convention, the names of these classes begin with mp .mm_shared_.

For example, a method to evaluate the node balance equations and corresponding Jacobian are used by both the PF and
CPF. Putting this method in a shared class, allows its functionality to be inherited by concrete math model classes for
both PF and CPF.

34 Chapter 8. Mathematical Model Object



Customizing MATPOWER

With the object-oriented MATPOWER core architecture and its explicit three layer modeling outlined in Section 3, the
flexibility and customizability of MATPOWER has increased dramatically.

New functionality can be added or existing functionality modified simply by adding new classes and/or subclassing
existing ones. This approach can be used to add or modify elements, problem formulations, and tasks.

9.1 Default Class Determination

In order to customize the behavior it is important to understand how MATPOWER selects which classes to instantiate
when running a particular task. There are default specifications for each of the various types of objects, as well as
several ways to override those defaults. The default, described below, is illustrated in Figure 9.1.

9.1.1 Task Class

First of all, at the top level, the task class is specified directly by the user through the function used to invoke the run. In
fact, run_pf (), run_cpf(), and run_opf () are simple one-line wrappers around the run_mp () function. The only
difference between the three is the value of the task_class argument, a handle to the corresponding task constructor,
passed into run_mp Q).

This means that a new task class can be used simply by invoking run_mp (), either directly or via a new wrapper, with
the task constructor as the task_class argument.

9.1.2 Model and Data Converter Classes

The task class has methods that determine the classes used to create the data model converter and the three model
objects. For each, there are two methods involved in determining the specific class to use, a main method and a default
method. The main method calls the default method to get a handle to the constructor for the task’s default class, but
then allows that value to be overridden by MATPOWER extensions or MATPOWER options.
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Figure 9.1: Determination of Default Classes
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Table 9.1: Class Specification Methods of a Task

Method Description

dm_converter_class() Returns the final class for the data model converter, after any over-
rides of the default.

data_model_class() Returns the final class for the data model, after any overrides of the
default.

network_model_class() Returns the final class for the network model, after any overrides of
the default.

math_model_class() Returns the final class for the math model, after any overrides of the
default.

dm_converter_class_mpc2_default() Returns the default class for the data model converter for this task.
Note that this is specific to the data format. Each data format would
have it’s own “default” method.

data_model_class_default() Returns the default class for the data model for this task.
network_model_class_default() Returns the default class for the network model for this task.
math_model_class_default() Returns the default class for the math model for this task.

Table 9.1 shows the methods that determine the classes for each of the 4 objects. Each method returns a handle to a
class constructor. In general, the main methods (the first 4 in the table) are inherited from mp . task and only the default
methods (the last 4) would be overridden to customize a task with new model or data model converter classes.

9.1.3 Element Classes

Each of the element container objects, that is the data model converter and the 3 model objects, contains a set of ele-
ments. The classes used to construct these elements are determined by the container class. Each container class inherits
from mp.element_container, and as such it has an element_classes property, which is a cell array populated by
the constructor with handles to constructors for the elements. This means that a container subclass can, by overriding
its constructor, modify the list of element classes provided by its parent.

The elements are instantiated by a call to the container object’s build () method, so the resulting set can be customized
at runtime by modifying the list in element_classes after the container object is created and before its build()
method is called.

This is done using element class modifiers, specified either by MATPOWER extensions or MATPOWER options. There
are 3 types of element class modifiers, for adding, deleting or replacing an entry in an element_classes property.
The 3 types are described in Table 9.2.

Table 9.2: Element Class Modifiers

Action Value Description

add @new_class Appends @new_class to the end of the list.

delete 'old_class' For each element E in the list, if isa(E(), 'old_class') is
true, element E is deleted from the list.

replace {@new_class, 'old_class'} For each element E in the list, if isa(E(), 'old_class') is

true, element E is replaced with @new_class.

Typically, multiple element class modifiers can be provided in a cell array and they are processed sequentially to modify
the existing list by the modify_element_classes() from mp.element_container.
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9.2 Customization via MATPOWER Options

In addition to the MATPOWER options previously available that affect the formulation of the problem (e.g. polar vs.
cartesian voltage representation, or current vs. power balance), there are several experimental options that can be
used to directly modify the classes coming from the default class selection process outlined above. These options,
summarized in Table 9.3, are specified by assigning them directly to an existing MATPOWER options struct mpopt as
optional fields in mpopt.exp. They must be assigned directly, since mpoption() does not recognize them.

Table 9.3: Class Customization Options

Option Description

dm_converter_class function handle for data model converter constructor

data_model_class function handle for data model constructor

network_model_class function handle for network model constructor

math_model_class function handle for math model constructor

dmc_element_classes element class modifier(s)' for data model converter elements

dm_element_classes element class modifier(s)"*¢ 3% ! for data model elements

nm_element_classes element class modifier(s)' for network model elements

mm_element_classes element class modifier(s)' for math model elements

exclude_elements cell array of names of elements to exclude from all four container objects, i.e. char

arrays that match the name property of the element(s) to be excluded

9.3 MATPOWER Extensions

The flexible MATPOWER framework summarized in Section 3.3 introduces a MATPOWER extension API as a way to
bundle a set of class additions and modifications together into a single named package.

For example, the mp.xt_reserves class and those it references, adds co-optimization of fixed zonal reserves to the
standard OPF problem, as previously implemented by toggle_reserves() and run_opf_w_res() in MATPOWER
7.1 and earlier using its legacy OPF callback functions. To invoke an OPF with the mp.xt_reserves extension, you
simply pass the extension object as an optional argument into the run_opf () function.

[run_opf(mpc, mpopt, 'mpx', mp.xt_reserves); J

A MATPOWER extension is a subclass of mp.extension, which implements a very simple interface consisting of nine
methods. Five of them return a single class constructor handle, and the other four return a cell array of element class
modifiers, described above in Table 9.2.

The methods are summarized in Table 9.4

Table 9.4: MATPOWER Extension Methods

Method Description

task_class(Q) Returns a handle to the constructor for the task object.
dm_converter_class() Returns a handle to the constructor for the data model converter.
data_model_class() Returns a handle to the constructor for the data model.
network_model_class() Returns a handle to the constructor for the network model.
math_model_class() Returns a handle to the constructor for the math model.

dmc_element_classes() Returns a cell array of element class modifiers for data model converter elements.
continues on next page

! Either a single element class modifier or a cell array of element class modifiers.

38 Chapter 9. Customizing MATPOWER



MATPOWER Developers’s Manual, Release 8.0

Table 9.4 — continued from previous page

Method Description
dm_element_classes() Returns a cell array of element class modifiers for data model elements.
nm_element_classes() Returns a cell array of element class modifiers for network model elements.
mm_element_classes() Returns a cell array of element class modifiers for math model elements.

Even something as complex as adding three-phase unbalanced buses, lines, loads and generators for multiple formu-
lations of PF, CPF, and OPF problems can be implemented in terms of a single MATPOWER extension. Please see

mp . xt_3p for an example.
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