.. _sec_notation: Notation ======== This section introduces and summarizes the mathematical notation used throughout this manual. This notation is consistent with what was used in the MP-Element technical note, |TN5| [TN5]_ where you can find more detail. **Styles** .. list-table:: :widths: 17 83 :class: longtable * - :math:`x, \theta` - real scalars * - :math:`\cscal{x}, \cscal{\uptheta}` - complex scalars * - :math:`\rvec{x}, \rvec{\theta}` - real vectors * - :math:`\cvec{x}, \cvecG{\uptheta}` - complex vectors * - :math:`\rmat{X}, \rmatG{\Theta}` - real matrices * - :math:`\cmat{X}, \cmatG{\Theta}` - complex matrices * - :math:`x, \cscal{x}, \rvec{x}, \cvec{x}, \rmat{X}, \cmat{X}` - variables, functions * - :math:`\param{x}, \param{\cscal{x}}, \param{\rvec{x}}, \param{\cvec{x}}, \param{\rmat{X}}, \param{\cmat{X}}` - constants, parameters [#]_ * - :math:`\hat{\rvec{x}}, \hat{\cvec{x}}, \hat{\rmat{X}}, \hat{\cmat{X}}` - selected rows of interest of :math:`\rvec{x}, \cvec{x}, \rmat{X}, \cmat{X}`, respectively [#]_ **Operators** .. list-table:: :widths: 17 83 :class: longtable * - :math:`\diag{\cvec{a}}` - diagonal matrix with vector :math:`\cvec{a}` on the diagonal * - :math:`\trans{\cmat{A}}` - (non-conjugate) transpose of matrix :math:`\cmat{A}` * - :math:`\conj{\cscal{a}}`, :math:`\conj{\cvec{a}}`, :math:`\conj{\cmat{A}}` - complex conjugate of :math:`\cscal{a}`, :math:`\cvec{a}`, and :math:`\cmat{A}`, respectively * - :math:`\Re\{{\cvec{a}\}}`, :math:`\Im\{{\cvec{a}\}}` - real and imaginary parts of :math:`\cvec{a}`, respectively * - :math:`\cvec{a}^{n}` - element-wise exponent [#]_ for vector :math:`\cvec{a}` * - :math:`\cmat{A}^{n}` - matrix exponent [3]_ for matrix :math:`\cmat{A}` * - :math:`a^{\rvec{b}}`, :math:`a^\rmat{B}` - element-wise exponent [3]_ for vector :math:`\rvec{b}` and matrix :math:`\rmat{B}`, respectively * - :math:`\f(\x), \F(\x)` - scalar, vector functions of :math:`\x`, respectively * - :math:`\f_\x, \F_\x` - transpose of gradient of :math:`\f`, Jacobian of :math:`\F`, respectively, w.r.t. :math:`\x` * - :math:`\f_{\x\x}, \F_{\x\x}(\lam)` - Hessian of :math:`\f`, Jacobian of :math:`\trans{\F_\x} \lam`, respectively, w.r.t. :math:`\x` **Constants and Dimensions** .. list-table:: :widths: 17 83 :class: longtable * - :math:`e, j` - constants, :math:`e` is base of natural log (:math:`\approx 2.71828`), :math:`j` is :math:`\sqrt{-1}` * - :math:`n_k, n_n, n_p, n_p^k` - number of elements, nodes, ports, ports for element :math:`k`, respectively * - :math:`n_\X, n_\V, n_\Z` - dimension of vector :math:`\X`, :math:`\V`, :math:`\Z`, respectively. * - :math:`\ones{n}, \Id{n}` - :math:`n \times 1` vector of all ones, :math:`n \times n` identity matrix * - :math:`\zeros` - appropriately-sized vector or matrix of all zeros **Variables** .. list-table:: :widths: 17 83 :class: longtable * - :math:`\vvi{i}` - complex voltage at node/port :math:`i` * - :math:`\vri{i}, \vii{i}` - real and imaginary parts of voltage at node/port :math:`i`, :math:`\vvi{i} = \vri{i} + j \vii{i}` * - :math:`\vmi{i}, \vai{i}` - voltage magnitude and angle at node/port :math:`i`, :math:`\vvi{i} = \vmi{i} e^{j \vai{i}}` * - :math:`\V` - column vector of complex voltages :math:`\vvi{i}` * - :math:`\E` - column vector :math:`\V` with elements scaled to unit magnitude, :math:`\E = e^{j \Va}` * - :math:`\Vr, \Vi` - column vectors of real (:math:`\vri{i}`) and imaginary (:math:`\vii{i}`) parts of voltage, respectively, :math:`\V = \Vr + j \Vi` * - :math:`\Vm, \Va` - column vectors of voltage magnitudes :math:`\vmi{i}` and angles :math:`\vai{i}`, respectively, :math:`\V = \dVm \E = \dVm e^{j \Va}` * - :math:`\inV` - column vector of inverse of complex voltages :math:`\frac{1}{\vvi{i}}`, :math:`\inV = \V^{-1}` * - :math:`\z` - column vector of real non-voltage state variables :math:`z_i` * - :math:`\Z` - column vector of complex non-voltage state variables :math:`\cscal{z}_i` * - :math:`\Zr, \Zi` - column vectors of real and imaginary parts of :math:`\Z = \Zr + j \Zi` **Parameters** .. list-table:: :widths: 17 83 :class: longtable * - :math:`\J_\kk` - matrix formed by taking selected rows, indexed by vector :math:`\kk`, from an identity matrix [#]_ * - :math:`\YY` - AC model admittance matrix * - :math:`\LL` - linear coefficient (of :math:`\Z`) for affine complex current injections * - :math:`\iv` - vector of constant complex current injections * - :math:`\MM` - linear coefficient (of :math:`\V`) for affine complex power injections * - :math:`\NN` - linear coefficient (of :math:`\Z`) for affine complex power injections * - :math:`\sv` - vector of constant complex power injections * - :math:`\BB` - DC model susceptance matrix * - :math:`\KK` - linear coefficient (of :math:`\z`) for affine active power injections * - :math:`\pv` - vector of constant active power injections * - :math:`\CC` - element-node incidence matrix for a given port * - :math:`\DD` - element-variable incidence matrix for a given state variable * - :math:`\Aa` - combined incidence matrix :math:`\Aa = \left[\begin{array}{ccc}\CC & \zeros \\ \zeros & \DD \end{array}\right]` .. [#] Constants and parameters are underlined, with the following exceptions: constants :math:`e` and :math:`j`, :math:`p`, :math:`q`, :math:`m` and :math:`n` when used as dimensions, and :math:`i`, :math:`j`, and :math:`k` as indices. .. [#] Obtained by multiplying by matrix :math:`\J` or :math:`\J_\kk`. .. [#] Superscripts may also be used as indices, indicated by context. .. [#] Often used simply as :math:`\J` without the subscript. .. Careful the 3rd footnote above is explicitly numbered as [3]_ in two references above (to avoid repeating the footnote itself).