0001 function t_insolvablepf(quiet)
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013 if nargin < 1
0014 quiet = 0;
0015 end
0016
0017 num_tests = 8;
0018
0019 t_begin(num_tests, quiet);
0020
0021 [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
0022 VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
0023 [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...
0024 MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...
0025 QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;
0026 [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
0027 TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
0028 ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
0029 [PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost;
0030
0031 casefile = 't_case9mod_opf';
0032 if quiet
0033 verbose = 0;
0034 else
0035 verbose = 0;
0036 end
0037
0038 t0 = 'INSOLVABLEPF : ';
0039
0040
0041 load soln9mod_opf;
0042
0043 res = loadcase(casefile);
0044 res.bus = bus_soln;
0045 res.gen = gen_soln;
0046 res.branch = branch_soln;
0047
0048
0049 mult = 10;
0050 res.bus(:,PD) = mult*res.bus(:,PD);
0051 res.bus(:,QD) = mult*res.bus(:,QD);
0052 res.gen(:,PG) = mult*res.gen(:,PG);
0053
0054 mpopt = mpoption('out.all', 0, 'verbose', verbose);
0055
0056
0057 t = [t0 '(insolvable case) :'];
0058 [insolvable,Vslack_min,sigma,eta,mineigratio] = insolvablepf(res,mpopt);
0059 t_ok(insolvable, [t ' insolvable']);
0060 t_is(Vslack_min, Vslack_min_soln, 3, [t ' Vslack_min']);
0061 t_is(sigma, sigma_soln, 3, [t ' sigma']);
0062 t_is(eta, eta_soln, 3, [t ' eta']);
0063
0064
0065
0066 load soln9mod_opf;
0067
0068 res = loadcase(casefile);
0069 res.bus = bus_soln;
0070 res.gen = gen_soln;
0071 res.branch = branch_soln;
0072
0073
0074 t = [t0 '(solvable case) :'];
0075 [insolvable,Vslack_min,sigma,eta,mineigratio] = insolvablepf(res,mpopt);
0076 t_ok(~insolvable, [t ' solvable']);
0077 t_is(Vslack_min, Vslack_min_soln / sqrt(mult), 3, [t ' Vslack_min']);
0078 t_is(sigma, sigma_soln * sqrt(10), 3, [t ' sigma']);
0079 t_is(eta, eta_soln * mult, 3, [t ' eta']);
0080
0081 t_end;