Home > matpower4.1 > t > t_opf_dc_mips_sc.m

t_opf_dc_mips_sc

PURPOSE ^

T_OPF_DC_MIPS_SC Tests for DC optimal power flow using MIPS-sc solver.

SYNOPSIS ^

function t_opf_dc_mips_sc(quiet)

DESCRIPTION ^

T_OPF_DC_MIPS_SC  Tests for DC optimal power flow using MIPS-sc solver.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function t_opf_dc_mips_sc(quiet)
0002 %T_OPF_DC_MIPS_SC  Tests for DC optimal power flow using MIPS-sc solver.
0003 
0004 %   MATPOWER
0005 %   $Id: t_opf_dc_mips_sc.m,v 1.8 2010/12/16 21:14:51 cvs Exp $
0006 %   by Ray Zimmerman, PSERC Cornell
0007 %   Copyright (c) 2004-2010 by Power System Engineering Research Center (PSERC)
0008 %
0009 %   This file is part of MATPOWER.
0010 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0011 %
0012 %   MATPOWER is free software: you can redistribute it and/or modify
0013 %   it under the terms of the GNU General Public License as published
0014 %   by the Free Software Foundation, either version 3 of the License,
0015 %   or (at your option) any later version.
0016 %
0017 %   MATPOWER is distributed in the hope that it will be useful,
0018 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0019 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0020 %   GNU General Public License for more details.
0021 %
0022 %   You should have received a copy of the GNU General Public License
0023 %   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.
0024 %
0025 %   Additional permission under GNU GPL version 3 section 7
0026 %
0027 %   If you modify MATPOWER, or any covered work, to interface with
0028 %   other modules (such as MATLAB code and MEX-files) available in a
0029 %   MATLAB(R) or comparable environment containing parts covered
0030 %   under other licensing terms, the licensors of MATPOWER grant
0031 %   you additional permission to convey the resulting work.
0032 
0033 if nargin < 1
0034     quiet = 0;
0035 end
0036 
0037 num_tests = 23;
0038 
0039 t_begin(num_tests, quiet);
0040 
0041 [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
0042     VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
0043 [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...
0044     MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...
0045     QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;
0046 [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
0047     TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
0048     ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
0049 
0050 casefile = 't_case9_opf';
0051 if quiet
0052     verbose = 0;
0053 else
0054     verbose = 0;
0055 end
0056 if have_fcn('octave')
0057     s1 = warning('query', 'Octave:load-file-in-path');
0058     warning('off', 'Octave:load-file-in-path');
0059 end
0060 
0061 t0 = 'DC OPF (MIPS-sc): ';
0062 mpopt = mpoption('OUT_ALL', 0, 'VERBOSE', verbose);
0063 mpopt = mpoption(mpopt, 'OPF_ALG_DC', 250);
0064 
0065 %% run DC OPF
0066 s6 = warning('query', 'MATLAB:nearlySingularMatrixUMFPACK');
0067 s2 = warning('query', 'MATLAB:singularMatrix');
0068 warning('off', 'MATLAB:nearlySingularMatrixUMFPACK');
0069 
0070 %% set up indices
0071 ib_data     = [1:BUS_AREA BASE_KV:VMIN];
0072 ib_voltage  = [VM VA];
0073 ib_lam      = [LAM_P LAM_Q];
0074 ib_mu       = [MU_VMAX MU_VMIN];
0075 ig_data     = [GEN_BUS QMAX QMIN MBASE:APF];
0076 ig_disp     = [PG QG VG];
0077 ig_mu       = (MU_PMAX:MU_QMIN);
0078 ibr_data    = (1:ANGMAX);
0079 ibr_flow    = (PF:QT);
0080 ibr_mu      = [MU_SF MU_ST];
0081 ibr_angmu   = [MU_ANGMIN MU_ANGMAX];
0082 
0083 %% get solved DC power flow case from MAT-file
0084 load soln9_dcopf;       %% defines bus_soln, gen_soln, branch_soln, f_soln
0085 
0086 %% run OPF
0087 t = t0;
0088 [baseMVA, bus, gen, gencost, branch, f, success, et] = rundcopf(casefile, mpopt);
0089 t_ok(success, [t 'success']);
0090 t_is(f, f_soln, 3, [t 'f']);
0091 t_is(   bus(:,ib_data   ),    bus_soln(:,ib_data   ), 10, [t 'bus data']);
0092 t_is(   bus(:,ib_voltage),    bus_soln(:,ib_voltage),  3, [t 'bus voltage']);
0093 t_is(   bus(:,ib_lam    ),    bus_soln(:,ib_lam    ),  3, [t 'bus lambda']);
0094 t_is(   bus(:,ib_mu     ),    bus_soln(:,ib_mu     ),  2, [t 'bus mu']);
0095 t_is(   gen(:,ig_data   ),    gen_soln(:,ig_data   ), 10, [t 'gen data']);
0096 t_is(   gen(:,ig_disp   ),    gen_soln(:,ig_disp   ),  3, [t 'gen dispatch']);
0097 t_is(   gen(:,ig_mu     ),    gen_soln(:,ig_mu     ),  3, [t 'gen mu']);
0098 t_is(branch(:,ibr_data  ), branch_soln(:,ibr_data  ), 10, [t 'branch data']);
0099 t_is(branch(:,ibr_flow  ), branch_soln(:,ibr_flow  ),  3, [t 'branch flow']);
0100 t_is(branch(:,ibr_mu    ), branch_soln(:,ibr_mu    ),  2, [t 'branch mu']);
0101 
0102 %%-----  run OPF with extra linear user constraints & costs  -----
0103 %% two new z variables
0104 %%      0 <= z1, P2 - P1 <= z1
0105 %%      0 <= z2, P2 - P3 <= z2
0106 %% with A and N sized for DC opf
0107 mpc = loadcase(casefile);
0108 mpc.A = sparse([1;1;1;2;2;2],[10;11;13;11;12;14],[-1;1;-1;1;-1;-1],2,14);
0109 mpc.u = [0; 0];
0110 mpc.l = [-Inf; -Inf];
0111 mpc.zl = [0; 0];
0112 
0113 mpc.N = sparse([1;2], [13;14], [1;1], 2, 14);   %% new z variables only
0114 mpc.fparm = ones(2,1) * [1 0 0 1];              %% w = r = z
0115 mpc.H = sparse(2,2);                            %% no quadratic term
0116 mpc.Cw = [1000;1];
0117 
0118 t = [t0 'w/extra constraints & costs 1 : '];
0119 [r, success] = rundcopf(mpc, mpopt);
0120 t_ok(success, [t 'success']);
0121 t_is(r.gen(1, PG), 116.15974, 4, [t 'Pg1 = 116.15974']);
0122 t_is(r.gen(2, PG), 116.15974, 4, [t 'Pg2 = 116.15974']);
0123 t_is(r.var.val.z, [0; 0.3348], 4, [t 'user vars']);
0124 t_is(r.cost.usr, 0.3348, 3, [t 'user costs']);
0125 
0126 %% with A and N sized for AC opf
0127 mpc = loadcase(casefile);
0128 mpc.A = sparse([1;1;1;2;2;2],[19;20;25;20;21;26],[-1;1;-1;1;-1;-1],2,26);
0129 mpc.u = [0; 0];
0130 mpc.l = [-Inf; -Inf];
0131 mpc.zl = [0; 0];
0132 
0133 mpc.N = sparse([1;2], [25;26], [1;1], 2, 26);   %% new z variables only
0134 mpc.fparm = ones(2,1) * [1 0 0 1];              %% w = r = z
0135 mpc.H = sparse(2,2);                            %% no quadratic term
0136 mpc.Cw = [1000;1];
0137 
0138 t = [t0 'w/extra constraints & costs 2 : '];
0139 [r, success] = rundcopf(mpc, mpopt);
0140 t_ok(success, [t 'success']);
0141 t_is(r.gen(1, PG), 116.15974, 4, [t 'Pg1 = 116.15974']);
0142 t_is(r.gen(2, PG), 116.15974, 4, [t 'Pg2 = 116.15974']);
0143 t_is(r.var.val.z, [0; 0.3348], 4, [t 'user vars']);
0144 t_is(r.cost.usr, 0.3348, 3, [t 'user costs']);
0145 
0146 t = [t0 'infeasible : '];
0147 warning('off', 'MATLAB:singularMatrix');
0148 %% with A and N sized for DC opf
0149 mpc = loadcase(casefile);
0150 mpc.A = sparse([1;1], [10;11], [1;1], 1, 14);   %% Pg1 + Pg2
0151 mpc.u = Inf;
0152 mpc.l = 600;
0153 [r, success] = rundcopf(mpc, mpopt);
0154 t_ok(~success, [t 'no success']);
0155 
0156 if have_fcn('octave')
0157     warning(s1.state, 'Octave:load-file-in-path');
0158 end
0159 warning(s6.state, 'MATLAB:nearlySingularMatrixUMFPACK');
0160 warning(s2.state, 'MATLAB:singularMatrix');
0161 
0162 t_end;

Generated on Mon 26-Jan-2015 15:00:13 by m2html © 2005