Home > matpower4.1 > newtonpf.m

newtonpf

PURPOSE ^

NEWTONPF Solves the power flow using a full Newton's method.

SYNOPSIS ^

function [V, converged, i] = newtonpf(Ybus, Sbus, V0, ref, pv, pq, mpopt)

DESCRIPTION ^

NEWTONPF  Solves the power flow using a full Newton's method.
   [V, CONVERGED, I] = NEWTONPF(YBUS, SBUS, V0, REF, PV, PQ, MPOPT)
   solves for bus voltages given the full system admittance matrix (for
   all buses), the complex bus power injection vector (for all buses),
   the initial vector of complex bus voltages, and column vectors with
   the lists of bus indices for the swing bus, PV buses, and PQ buses,
   respectively. The bus voltage vector contains the set point for
   generator (including ref bus) buses, and the reference angle of the
   swing bus, as well as an initial guess for remaining magnitudes and
   angles. MPOPT is a MATPOWER options vector which can be used to 
   set the termination tolerance, maximum number of iterations, and 
   output options (see MPOPTION for details). Uses default options if
   this parameter is not given. Returns the final complex voltages, a
   flag which indicates whether it converged or not, and the number of
   iterations performed.

   See also RUNPF.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [V, converged, i] = newtonpf(Ybus, Sbus, V0, ref, pv, pq, mpopt)
0002 %NEWTONPF  Solves the power flow using a full Newton's method.
0003 %   [V, CONVERGED, I] = NEWTONPF(YBUS, SBUS, V0, REF, PV, PQ, MPOPT)
0004 %   solves for bus voltages given the full system admittance matrix (for
0005 %   all buses), the complex bus power injection vector (for all buses),
0006 %   the initial vector of complex bus voltages, and column vectors with
0007 %   the lists of bus indices for the swing bus, PV buses, and PQ buses,
0008 %   respectively. The bus voltage vector contains the set point for
0009 %   generator (including ref bus) buses, and the reference angle of the
0010 %   swing bus, as well as an initial guess for remaining magnitudes and
0011 %   angles. MPOPT is a MATPOWER options vector which can be used to
0012 %   set the termination tolerance, maximum number of iterations, and
0013 %   output options (see MPOPTION for details). Uses default options if
0014 %   this parameter is not given. Returns the final complex voltages, a
0015 %   flag which indicates whether it converged or not, and the number of
0016 %   iterations performed.
0017 %
0018 %   See also RUNPF.
0019 
0020 %   MATPOWER
0021 %   $Id: newtonpf.m,v 1.14 2011/12/14 17:05:18 cvs Exp $
0022 %   by Ray Zimmerman, PSERC Cornell
0023 %   Copyright (c) 1996-2011 by Power System Engineering Research Center (PSERC)
0024 %
0025 %   This file is part of MATPOWER.
0026 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0027 %
0028 %   MATPOWER is free software: you can redistribute it and/or modify
0029 %   it under the terms of the GNU General Public License as published
0030 %   by the Free Software Foundation, either version 3 of the License,
0031 %   or (at your option) any later version.
0032 %
0033 %   MATPOWER is distributed in the hope that it will be useful,
0034 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0035 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0036 %   GNU General Public License for more details.
0037 %
0038 %   You should have received a copy of the GNU General Public License
0039 %   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.
0040 %
0041 %   Additional permission under GNU GPL version 3 section 7
0042 %
0043 %   If you modify MATPOWER, or any covered work, to interface with
0044 %   other modules (such as MATLAB code and MEX-files) available in a
0045 %   MATLAB(R) or comparable environment containing parts covered
0046 %   under other licensing terms, the licensors of MATPOWER grant
0047 %   you additional permission to convey the resulting work.
0048 
0049 %% default arguments
0050 if nargin < 7
0051     mpopt = mpoption;
0052 end
0053 
0054 %% options
0055 tol     = mpopt(2);
0056 max_it  = mpopt(3);
0057 verbose = mpopt(31);
0058 
0059 %% initialize
0060 converged = 0;
0061 i = 0;
0062 V = V0;
0063 Va = angle(V);
0064 Vm = abs(V);
0065 
0066 %% set up indexing for updating V
0067 npv = length(pv);
0068 npq = length(pq);
0069 j1 = 1;         j2 = npv;           %% j1:j2 - V angle of pv buses
0070 j3 = j2 + 1;    j4 = j2 + npq;      %% j3:j4 - V angle of pq buses
0071 j5 = j4 + 1;    j6 = j4 + npq;      %% j5:j6 - V mag of pq buses
0072 
0073 %% evaluate F(x0)
0074 mis = V .* conj(Ybus * V) - Sbus;
0075 F = [   real(mis([pv; pq]));
0076         imag(mis(pq))   ];
0077 
0078 %% check tolerance
0079 normF = norm(F, inf);
0080 if verbose > 1
0081     fprintf('\n it    max P & Q mismatch (p.u.)');
0082     fprintf('\n----  ---------------------------');
0083     fprintf('\n%3d        %10.3e', i, normF);
0084 end
0085 if normF < tol
0086     converged = 1;
0087     if verbose > 1
0088         fprintf('\nConverged!\n');
0089     end
0090 end
0091 
0092 %% do Newton iterations
0093 while (~converged && i < max_it)
0094     %% update iteration counter
0095     i = i + 1;
0096     
0097     %% evaluate Jacobian
0098     [dSbus_dVm, dSbus_dVa] = dSbus_dV(Ybus, V);
0099     
0100     j11 = real(dSbus_dVa([pv; pq], [pv; pq]));
0101     j12 = real(dSbus_dVm([pv; pq], pq));
0102     j21 = imag(dSbus_dVa(pq, [pv; pq]));
0103     j22 = imag(dSbus_dVm(pq, pq));
0104     
0105     J = [   j11 j12;
0106             j21 j22;    ];
0107 
0108     %% compute update step
0109     dx = -(J \ F);
0110 
0111     %% update voltage
0112     if npv
0113         Va(pv) = Va(pv) + dx(j1:j2);
0114     end
0115     if npq
0116         Va(pq) = Va(pq) + dx(j3:j4);
0117         Vm(pq) = Vm(pq) + dx(j5:j6);
0118     end
0119     V = Vm .* exp(1j * Va);
0120     Vm = abs(V);            %% update Vm and Va again in case
0121     Va = angle(V);          %% we wrapped around with a negative Vm
0122 
0123     %% evalute F(x)
0124     mis = V .* conj(Ybus * V) - Sbus;
0125     F = [   real(mis(pv));
0126             real(mis(pq));
0127             imag(mis(pq))   ];
0128 
0129     %% check for convergence
0130     normF = norm(F, inf);
0131     if verbose > 1
0132         fprintf('\n%3d        %10.3e', i, normF);
0133     end
0134     if normF < tol
0135         converged = 1;
0136         if verbose
0137             fprintf('\nNewton''s method power flow converged in %d iterations.\n', i);
0138         end
0139     end
0140 end
0141 
0142 if verbose
0143     if ~converged
0144         fprintf('\nNewton''s method power did not converge in %d iterations.\n', i);
0145     end
0146 end

Generated on Mon 26-Jan-2015 15:00:13 by m2html © 2005