Home > matpower4.1 > ipopt_options.m

ipopt_options

PURPOSE ^

IPOPT_OPTIONS Sets options for IPOPT.

SYNOPSIS ^

function opt = ipopt_options(overrides, mpopt)

DESCRIPTION ^

IPOPT_OPTIONS  Sets options for IPOPT.

   OPT = IPOPT_OPTIONS
   OPT = IPOPT_OPTIONS(OVERRIDES)
   OPT = IPOPT_OPTIONS(OVERRIDES, FNAME)
   OPT = IPOPT_OPTIONS(OVERRIDES, MPOPT)

   Sets the values for the options.ipopt struct normally passed to
   IPOPT.

   Inputs are all optional, second argument must be either a string
   (FNAME) or a vector (MPOPT):

       OVERRIDES - struct containing values to override the defaults
       FNAME - name of user-supplied function called after default
           options are set to modify them. Calling syntax is:
                   MODIFIED_OPT = FNAME(DEFAULT_OPT);
       MPOPT - MATPOWER options vector, used to set print_level
       MPOPT - MATPOWER options vector, uses the following entries:
           OPF_VIOLATION (16)  - used to set opt.constr_viol_tol
           VERBOSE (31)        - used to opt.print_level
           IPOPT_OPT (60)      - user option file, if MPOPT(60) is
               non-zero it is appended to 'ipopt_user_options_' to form
               the name of a user-supplied function used as FNAME
               described above, except with calling syntax:
                   MODIFIED_OPT = FNAME(DEFAULT_OPT, MPOPT);

   Output is an options.ipopt struct to pass to IPOPT.

   Example:

   If MPOPT(60) = 3, then after setting the default IPOPT options,
   IPOPT_OPTIONS will execute the following user-defined function
   to allow option overrides:

       opt = ipopt_user_options_3(opt, mpopt);

   The contents of ipopt_user_options_3.m, could be something like:

       function opt = ipopt_user_options_3(opt, mpopt)
       opt.nlp_scaling_method = 'none';
       opt.max_iter           = 500;
       opt.derivative_test    = 'first-order';

   See the options reference section in the IPOPT documentation for
   details on the available options.

       http://www.coin-or.org/Ipopt/documentation/

   See also IPOPT, MPOPTION.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function opt = ipopt_options(overrides, mpopt)
0002 %IPOPT_OPTIONS  Sets options for IPOPT.
0003 %
0004 %   OPT = IPOPT_OPTIONS
0005 %   OPT = IPOPT_OPTIONS(OVERRIDES)
0006 %   OPT = IPOPT_OPTIONS(OVERRIDES, FNAME)
0007 %   OPT = IPOPT_OPTIONS(OVERRIDES, MPOPT)
0008 %
0009 %   Sets the values for the options.ipopt struct normally passed to
0010 %   IPOPT.
0011 %
0012 %   Inputs are all optional, second argument must be either a string
0013 %   (FNAME) or a vector (MPOPT):
0014 %
0015 %       OVERRIDES - struct containing values to override the defaults
0016 %       FNAME - name of user-supplied function called after default
0017 %           options are set to modify them. Calling syntax is:
0018 %                   MODIFIED_OPT = FNAME(DEFAULT_OPT);
0019 %       MPOPT - MATPOWER options vector, used to set print_level
0020 %       MPOPT - MATPOWER options vector, uses the following entries:
0021 %           OPF_VIOLATION (16)  - used to set opt.constr_viol_tol
0022 %           VERBOSE (31)        - used to opt.print_level
0023 %           IPOPT_OPT (60)      - user option file, if MPOPT(60) is
0024 %               non-zero it is appended to 'ipopt_user_options_' to form
0025 %               the name of a user-supplied function used as FNAME
0026 %               described above, except with calling syntax:
0027 %                   MODIFIED_OPT = FNAME(DEFAULT_OPT, MPOPT);
0028 %
0029 %   Output is an options.ipopt struct to pass to IPOPT.
0030 %
0031 %   Example:
0032 %
0033 %   If MPOPT(60) = 3, then after setting the default IPOPT options,
0034 %   IPOPT_OPTIONS will execute the following user-defined function
0035 %   to allow option overrides:
0036 %
0037 %       opt = ipopt_user_options_3(opt, mpopt);
0038 %
0039 %   The contents of ipopt_user_options_3.m, could be something like:
0040 %
0041 %       function opt = ipopt_user_options_3(opt, mpopt)
0042 %       opt.nlp_scaling_method = 'none';
0043 %       opt.max_iter           = 500;
0044 %       opt.derivative_test    = 'first-order';
0045 %
0046 %   See the options reference section in the IPOPT documentation for
0047 %   details on the available options.
0048 %
0049 %       http://www.coin-or.org/Ipopt/documentation/
0050 %
0051 %   See also IPOPT, MPOPTION.
0052 
0053 %   MATPOWER
0054 %   $Id: ipopt_options.m,v 1.8 2011/11/10 21:33:53 cvs Exp $
0055 %   by Ray Zimmerman, PSERC Cornell
0056 %   Copyright (c) 2010 by Power System Engineering Research Center (PSERC)
0057 %
0058 %   This file is part of MATPOWER.
0059 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0060 %
0061 %   MATPOWER is free software: you can redistribute it and/or modify
0062 %   it under the terms of the GNU General Public License as published
0063 %   by the Free Software Foundation, either version 3 of the License,
0064 %   or (at your option) any later version.
0065 %
0066 %   MATPOWER is distributed in the hope that it will be useful,
0067 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0068 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0069 %   GNU General Public License for more details.
0070 %
0071 %   You should have received a copy of the GNU General Public License
0072 %   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.
0073 %
0074 %   Additional permission under GNU GPL version 3 section 7
0075 %
0076 %   If you modify MATPOWER, or any covered work, to interface with
0077 %   other modules (such as MATLAB code and MEX-files) available in a
0078 %   MATLAB(R) or comparable environment containing parts covered
0079 %   under other licensing terms, the licensors of MATPOWER grant
0080 %   you additional permission to convey the resulting work.
0081 
0082 %%-----  initialization and arg handling  -----
0083 %% defaults
0084 verbose = 2;
0085 fname   = '';
0086 
0087 %% second argument
0088 if nargin > 1 && ~isempty(mpopt)
0089     if ischar(mpopt)        %% 2nd arg is FNAME (string)
0090         fname = mpopt;
0091         have_mpopt = 0;
0092     else                    %% 2nd arg is MPOPT (MATPOWER options vector)
0093         have_mpopt = 1;
0094         verbose = mpopt(31);    %% VERBOSE
0095         if mpopt(60)            %% IPOPT_OPT
0096             fname = sprintf('ipopt_user_options_%d', mpopt(60));
0097         end
0098     end
0099 else
0100     have_mpopt = 0;
0101 end
0102 
0103 %%-----  set default options for IPOPT  -----
0104 %% printing
0105 if verbose
0106     opt.print_level = min(12, verbose*2+1);
0107 else
0108     opt.print_level = 0;
0109 end
0110 
0111 %% convergence
0112 opt.tol             = 1e-8;                %% default 1e-8
0113 opt.max_iter        = 250;                  %% default 3000
0114 opt.dual_inf_tol    = 0.1;                  %% default 1
0115 if have_mpopt
0116     opt.constr_viol_tol = mpopt(16);        %% default 1e-4
0117     opt.acceptable_constr_viol_tol = mpopt(16)*100;     %% default 1e-2
0118 end
0119 opt.compl_inf_tol   = 1e-5;                 %% default 1e-4
0120 opt.acceptable_tol  = 1e-8;                 %% default 1e-6
0121 % opt.acceptable_iter = 15;                   %% default 15
0122 % opt.acceptable_dual_inf_tol     = 1e+10;    %% default 1e+10
0123 opt.acceptable_compl_inf_tol    = 1e-3;     %% default 1e-2
0124 % opt.acceptable_obj_change_tol   = 1e+20;    %% default 1e+20
0125 % opt.diverging_iterates_tol      = 1e+20;    %% default 1e+20
0126 
0127 %% NLP scaling
0128 % opt.nlp_scaling_method  = 'none';           %% default 'gradient-based'
0129 
0130 %% NLP
0131 % opt.fixed_variable_treatment    = 'make_constraint';    %% default 'make_parameter'
0132 % opt.honor_original_bounds       = 'no';                 %% default 'yes'
0133 % opt.check_derivatives_for_naninf = 'yes';               %% default 'no'
0134 
0135 %% initialization
0136 % opt.least_square_init_primal    = 'yes';        %% default 'no'
0137 % opt.least_square_init_duals     = 'yes';        %% default 'no'
0138 
0139 %% barrier parameter update
0140 opt.mu_strategy                 = 'adaptive';   %% default 'monotone'
0141 
0142 %% linear solver
0143 % opt.linear_solver   = 'ma27';
0144 % opt.linear_solver   = 'ma57';
0145 % opt.linear_solver   = 'pardiso';
0146 % opt.linear_solver   = 'wsmp';
0147 % opt.linear_solver   = 'mumps';          %% default 'mumps'
0148 % opt.linear_solver   = 'custom';
0149 % opt.linear_scaling_on_demand    = 'no'; %% default 'yes'
0150 
0151 %% step calculation
0152 % opt.mehrotra_algorithm      = 'yes';    %% default 'no'
0153 % opt.fast_step_computation   = 'yes';    %% default 'no'
0154 
0155 %% restoration phase
0156 % opt.expect_infeasible_problem   = 'yes';    %% default 'no'
0157 
0158 %% derivative checker
0159 % opt.derivative_test         = 'second-order';   %% default 'none'
0160 
0161 %% hessian approximation
0162 % opt.hessian_approximation   = 'limited-memory'; %% default 'exact'
0163 
0164 % ma57 options
0165 %opt.ma57_pre_alloc = 3;
0166 %opt.ma57_pivot_order = 4;
0167 
0168 %%-----  call user function to modify defaults  -----
0169 if ~isempty(fname)
0170     if have_mpopt
0171         opt = feval(fname, opt, mpopt);
0172     else
0173         opt = feval(fname, opt);
0174     end
0175 end
0176 
0177 %%-----  apply overrides  -----
0178 if nargin > 0 && ~isempty(overrides)
0179     names = fieldnames(overrides);
0180     for k = 1:length(names)
0181         opt.(names{k}) = overrides.(names{k});
0182     end
0183 end
0184 
0185 
0186 %--------------------------  Options Documentation  --------------------------
0187 % (as printed by IPOPT 3.8)
0188 % ### Output ###
0189 %
0190 % print_level                            0 <= (          5) <= 12
0191 %    Output verbosity level.
0192 %      Sets the default verbosity level for console output. The larger this
0193 %      value the more detailed is the output.
0194 %
0195 % output_file                   ("")
0196 %    File name of desired output file (leave unset for no file output).
0197 %      NOTE: This option only works when read from the ipopt.opt options file!
0198 %      An output file with this name will be written (leave unset for no file
0199 %      output).  The verbosity level is by default set to "print_level", but can
0200 %      be overridden with "file_print_level".  The file name is changed to use
0201 %      only small letters.
0202 %    Possible values:
0203 %     - *                       [Any acceptable standard file name]
0204 %
0205 % file_print_level                       0 <= (          5) <= 12
0206 %    Verbosity level for output file.
0207 %      NOTE: This option only works when read from the ipopt.opt options file!
0208 %      Determines the verbosity level for the file specified by "output_file".
0209 %      By default it is the same as "print_level".
0210 %
0211 % print_user_options            ("no")
0212 %    Print all options set by the user.
0213 %      If selected, the algorithm will print the list of all options set by the
0214 %      user including their values and whether they have been used.  In some
0215 %      cases this information might be incorrect, due to the internal program
0216 %      flow.
0217 %    Possible values:
0218 %     - no                      [don't print options]
0219 %     - yes                     [print options]
0220 %
0221 % print_options_documentation   ("no")
0222 %    Switch to print all algorithmic options.
0223 %      If selected, the algorithm will print the list of all available
0224 %      algorithmic options with some documentation before solving the
0225 %      optimization problem.
0226 %    Possible values:
0227 %     - no                      [don't print list]
0228 %     - yes                     [print list]
0229 %
0230 % print_timing_statistics       ("no")
0231 %    Switch to print timing statistics.
0232 %      If selected, the program will print the CPU usage (user time) for
0233 %      selected tasks.
0234 %    Possible values:
0235 %     - no                      [don't print statistics]
0236 %     - yes                     [print all timing statistics]
0237 %
0238 % option_file_name              ("")
0239 %    File name of options file (to overwrite default).
0240 %      By default, the name of the Ipopt options file is "ipopt.opt" - or
0241 %      something else if specified in the IpoptApplication::Initialize call. If
0242 %      this option is set by SetStringValue BEFORE the options file is read, it
0243 %      specifies the name of the options file.  It does not make any sense to
0244 %      specify this option within the options file.
0245 %    Possible values:
0246 %     - *                       [Any acceptable standard file name]
0247 %
0248 % replace_bounds                ("no")
0249 %    Indicates if all variable bounds should be replaced by inequality
0250 %    constraints
0251 %      This option must be set for the inexact algorithm
0252 %    Possible values:
0253 %     - no                      [leave bounds on variables]
0254 %     - yes                     [replace variable bounds by inequality
0255 %                                constraints]
0256 %
0257 % skip_finalize_solution_call   ("no")
0258 %    Indicates if call to NLP::FinalizeSolution after optimization should be
0259 %    suppressed
0260 %      In some Ipopt applications, the user might want to call the
0261 %      FinalizeSolution method separately.  Setting this option to "yes" will
0262 %      cause the IpoptApplication object to suppress the default call to that
0263 %      method.
0264 %    Possible values:
0265 %     - no                      [call FinalizeSolution]
0266 %     - yes                     [do not call FinalizeSolution]
0267 %
0268 % print_info_string             ("no")
0269 %    Enables printing of additional info string at end of iteration output.
0270 %      This string contains some insider information about the current iteration.
0271 %    Possible values:
0272 %     - no                      [don't print string]
0273 %     - yes                     [print string at end of each iteration output]
0274 %
0275 %
0276 %
0277 % ### Convergence ###
0278 %
0279 % tol                                    0 <  (      1e-08) <  +inf
0280 %    Desired convergence tolerance (relative).
0281 %      Determines the convergence tolerance for the algorithm.  The algorithm
0282 %      terminates successfully, if the (scaled) NLP error becomes smaller than
0283 %      this value, and if the (absolute) criteria according to "dual_inf_tol",
0284 %      "primal_inf_tol", and "cmpl_inf_tol" are met.  (This is epsilon_tol in
0285 %      Eqn. (6) in implementation paper).  See also "acceptable_tol" as a second
0286 %      termination criterion.  Note, some other algorithmic features also use
0287 %      this quantity to determine thresholds etc.
0288 %
0289 % s_max                                  0 <  (        100) <  +inf
0290 %    Scaling threshold for the NLP error.
0291 %      (See paragraph after Eqn. (6) in the implementation paper.)
0292 %
0293 % max_iter                               0 <= (       3000) <  +inf
0294 %    Maximum number of iterations.
0295 %      The algorithm terminates with an error message if the number of
0296 %      iterations exceeded this number.
0297 %
0298 % max_cpu_time                           0 <  (      1e+06) <  +inf
0299 %    Maximum number of CPU seconds.
0300 %      A limit on CPU seconds that Ipopt can use to solve one problem.  If
0301 %      during the convergence check this limit is exceeded, Ipopt will terminate
0302 %      with a corresponding error message.
0303 %
0304 % dual_inf_tol                           0 <  (          1) <  +inf
0305 %    Desired threshold for the dual infeasibility.
0306 %      Absolute tolerance on the dual infeasibility. Successful termination
0307 %      requires that the max-norm of the (unscaled) dual infeasibility is less
0308 %      than this threshold.
0309 %
0310 % constr_viol_tol                        0 <  (     0.0001) <  +inf
0311 %    Desired threshold for the constraint violation.
0312 %      Absolute tolerance on the constraint violation. Successful termination
0313 %      requires that the max-norm of the (unscaled) constraint violation is less
0314 %      than this threshold.
0315 %
0316 % compl_inf_tol                          0 <  (     0.0001) <  +inf
0317 %    Desired threshold for the complementarity conditions.
0318 %      Absolute tolerance on the complementarity. Successful termination
0319 %      requires that the max-norm of the (unscaled) complementarity is less than
0320 %      this threshold.
0321 %
0322 % acceptable_tol                         0 <  (      1e-06) <  +inf
0323 %    "Acceptable" convergence tolerance (relative).
0324 %      Determines which (scaled) overall optimality error is considered to be
0325 %      "acceptable." There are two levels of termination criteria.  If the usual
0326 %      "desired" tolerances (see tol, dual_inf_tol etc) are satisfied at an
0327 %      iteration, the algorithm immediately terminates with a success message.
0328 %      On the other hand, if the algorithm encounters "acceptable_iter" many
0329 %      iterations in a row that are considered "acceptable", it will terminate
0330 %      before the desired convergence tolerance is met. This is useful in cases
0331 %      where the algorithm might not be able to achieve the "desired" level of
0332 %      accuracy.
0333 %
0334 % acceptable_iter                        0 <= (         15) <  +inf
0335 %    Number of "acceptable" iterates before triggering termination.
0336 %      If the algorithm encounters this many successive "acceptable" iterates
0337 %      (see "acceptable_tol"), it terminates, assuming that the problem has been
0338 %      solved to best possible accuracy given round-off.  If it is set to zero,
0339 %      this heuristic is disabled.
0340 %
0341 % acceptable_dual_inf_tol                0 <  (      1e+10) <  +inf
0342 %    "Acceptance" threshold for the dual infeasibility.
0343 %      Absolute tolerance on the dual infeasibility. "Acceptable" termination
0344 %      requires that the (max-norm of the unscaled) dual infeasibility is less
0345 %      than this threshold; see also acceptable_tol.
0346 %
0347 % acceptable_constr_viol_tol             0 <  (       0.01) <  +inf
0348 %    "Acceptance" threshold for the constraint violation.
0349 %      Absolute tolerance on the constraint violation. "Acceptable" termination
0350 %      requires that the max-norm of the (unscaled) constraint violation is less
0351 %      than this threshold; see also acceptable_tol.
0352 %
0353 % acceptable_compl_inf_tol               0 <  (       0.01) <  +inf
0354 %    "Acceptance" threshold for the complementarity conditions.
0355 %      Absolute tolerance on the complementarity. "Acceptable" termination
0356 %      requires that the max-norm of the (unscaled) complementarity is less than
0357 %      this threshold; see also acceptable_tol.
0358 %
0359 % acceptable_obj_change_tol              0 <= (      1e+20) <  +inf
0360 %    "Acceptance" stopping criterion based on objective function change.
0361 %      If the relative change of the objective function (scaled by
0362 %      Max(1,|f(x)|)) is less than this value, this part of the acceptable
0363 %      tolerance termination is satisfied; see also acceptable_tol.  This is
0364 %      useful for the quasi-Newton option, which has trouble to bring down the
0365 %      dual infeasibility.
0366 %
0367 % diverging_iterates_tol                 0 <  (      1e+20) <  +inf
0368 %    Threshold for maximal value of primal iterates.
0369 %      If any component of the primal iterates exceeded this value (in absolute
0370 %      terms), the optimization is aborted with the exit message that the
0371 %      iterates seem to be diverging.
0372 %
0373 %
0374 %
0375 % ### NLP Scaling ###
0376 %
0377 % nlp_scaling_method            ("gradient-based")
0378 %    Select the technique used for scaling the NLP.
0379 %      Selects the technique used for scaling the problem internally before it
0380 %      is solved. For user-scaling, the parameters come from the NLP. If you are
0381 %      using AMPL, they can be specified through suffixes ("scaling_factor")
0382 %    Possible values:
0383 %     - none                    [no problem scaling will be performed]
0384 %     - user-scaling            [scaling parameters will come from the user]
0385 %     - gradient-based          [scale the problem so the maximum gradient at
0386 %                                the starting point is scaling_max_gradient]
0387 %     - equilibration-based     [scale the problem so that first derivatives are
0388 %                                of order 1 at random points (only available
0389 %                                with MC19)]
0390 %
0391 % obj_scaling_factor                  -inf <  (          1) <  +inf
0392 %    Scaling factor for the objective function.
0393 %      This option sets a scaling factor for the objective function. The scaling
0394 %      is seen internally by Ipopt but the unscaled objective is reported in the
0395 %      console output. If additional scaling parameters are computed (e.g.
0396 %      user-scaling or gradient-based), both factors are multiplied. If this
0397 %      value is chosen to be negative, Ipopt will maximize the objective
0398 %      function instead of minimizing it.
0399 %
0400 % nlp_scaling_max_gradient               0 <  (        100) <  +inf
0401 %    Maximum gradient after NLP scaling.
0402 %      This is the gradient scaling cut-off. If the maximum gradient is above
0403 %      this value, then gradient based scaling will be performed. Scaling
0404 %      parameters are calculated to scale the maximum gradient back to this
0405 %      value. (This is g_max in Section 3.8 of the implementation paper.) Note:
0406 %      This option is only used if "nlp_scaling_method" is chosen as
0407 %      "gradient-based".
0408 %
0409 % nlp_scaling_obj_target_gradient         0 <= (          0) <  +inf
0410 %    Target value for objective function gradient size.
0411 %      If a positive number is chosen, the scaling factor the objective function
0412 %      is computed so that the gradient has the max norm of the given size at
0413 %      the starting point.  This overrides nlp_scaling_max_gradient for the
0414 %      objective function.
0415 %
0416 % nlp_scaling_constr_target_gradient         0 <= (          0) <  +inf
0417 %    Target value for constraint function gradient size.
0418 %      If a positive number is chosen, the scaling factor the constraint
0419 %      functions is computed so that the gradient has the max norm of the given
0420 %      size at the starting point.  This overrides nlp_scaling_max_gradient for
0421 %      the constraint functions.
0422 %
0423 %
0424 %
0425 % ### NLP ###
0426 %
0427 % nlp_lower_bound_inf                 -inf <  (     -1e+19) <  +inf
0428 %    any bound less or equal this value will be considered -inf (i.e. not lower
0429 %    bounded).
0430 %
0431 % nlp_upper_bound_inf                 -inf <  (      1e+19) <  +inf
0432 %    any bound greater or this value will be considered +inf (i.e. not upper
0433 %    bounded).
0434 %
0435 % fixed_variable_treatment      ("make_parameter")
0436 %    Determines how fixed variables should be handled.
0437 %      The main difference between those options is that the starting point in
0438 %      the "make_constraint" case still has the fixed variables at their given
0439 %      values, whereas in the case "make_parameter" the functions are always
0440 %      evaluated with the fixed values for those variables.  Also, for
0441 %      "relax_bounds", the fixing bound constraints are relaxed (according to"
0442 %      bound_relax_factor"). For both "make_constraints" and "relax_bounds",
0443 %      bound multipliers are computed for the fixed variables.
0444 %    Possible values:
0445 %     - make_parameter          [Remove fixed variable from optimization
0446 %                                variables]
0447 %     - make_constraint         [Add equality constraints fixing variables]
0448 %     - relax_bounds            [Relax fixing bound constraints]
0449 %
0450 % dependency_detector           ("none")
0451 %    Indicates which linear solver should be used to detect linearly dependent
0452 %    equality constraints.
0453 %      The default and available choices depend on how Ipopt has been compiled.
0454 %      This is experimental and does not work well.
0455 %    Possible values:
0456 %     - none                    [don't check; no extra work at beginning]
0457 %     - mumps                   [use MUMPS]
0458 %     - wsmp                    [use WSMP]
0459 %     - ma28                    [use MA28]
0460 %
0461 % dependency_detection_with_rhs ("no")
0462 %    Indicates if the right hand sides of the constraints should be considered
0463 %    during dependency detection
0464 %    Possible values:
0465 %     - no                      [only look at gradients]
0466 %     - yes                     [also consider right hand side]
0467 %
0468 % num_linear_variables                   0 <= (          0) <  +inf
0469 %    Number of linear variables
0470 %      When the Hessian is approximated, it is assumed that the first
0471 %      num_linear_variables variables are linear.  The Hessian is then not
0472 %      approximated in this space.  If the get_number_of_nonlinear_variables
0473 %      method in the TNLP is implemented, this option is ignored.
0474 %
0475 % kappa_d                                0 <= (      1e-05) <  +inf
0476 %    Weight for linear damping term (to handle one-sided bounds).
0477 %      (see Section 3.7 in implementation paper.)
0478 %
0479 % bound_relax_factor                     0 <= (      1e-08) <  +inf
0480 %    Factor for initial relaxation of the bounds.
0481 %      Before start of the optimization, the bounds given by the user are
0482 %      relaxed.  This option sets the factor for this relaxation.  If it is set
0483 %      to zero, then then bounds relaxation is disabled. (See Eqn.(35) in
0484 %      implementation paper.)
0485 %
0486 % honor_original_bounds         ("yes")
0487 %    Indicates whether final points should be projected into original bounds.
0488 %      Ipopt might relax the bounds during the optimization (see, e.g., option
0489 %      "bound_relax_factor").  This option determines whether the final point
0490 %      should be projected back into the user-provide original bounds after the
0491 %      optimization.
0492 %    Possible values:
0493 %     - no                      [Leave final point unchanged]
0494 %     - yes                     [Project final point back into original bounds]
0495 %
0496 % check_derivatives_for_naninf  ("no")
0497 %    Indicates whether it is desired to check for Nan/Inf in derivative matrices
0498 %      Activating this option will cause an error if an invalid number is
0499 %      detected in the constraint Jacobians or the Lagrangian Hessian.  If this
0500 %      is not activated, the test is skipped, and the algorithm might proceed
0501 %      with invalid numbers and fail.
0502 %    Possible values:
0503 %     - no                      [Don't check (faster).]
0504 %     - yes                     [Check Jacobians and Hessian for Nan and Inf.]
0505 %
0506 % jac_c_constant                ("no")
0507 %    Indicates whether all equality constraints are linear
0508 %      Activating this option will cause Ipopt to ask for the Jacobian of the
0509 %      equality constraints only once from the NLP and reuse this information
0510 %      later.
0511 %    Possible values:
0512 %     - no                      [Don't assume that all equality constraints are
0513 %                                linear]
0514 %     - yes                     [Assume that equality constraints Jacobian are
0515 %                                constant]
0516 %
0517 % jac_d_constant                ("no")
0518 %    Indicates whether all inequality constraints are linear
0519 %      Activating this option will cause Ipopt to ask for the Jacobian of the
0520 %      inequality constraints only once from the NLP and reuse this information
0521 %      later.
0522 %    Possible values:
0523 %     - no                      [Don't assume that all inequality constraints
0524 %                                are linear]
0525 %     - yes                     [Assume that equality constraints Jacobian are
0526 %                                constant]
0527 %
0528 % hessian_constant              ("no")
0529 %    Indicates whether the problem is a quadratic problem
0530 %      Activating this option will cause Ipopt to ask for the Hessian of the
0531 %      Lagrangian function only once from the NLP and reuse this information
0532 %      later.
0533 %    Possible values:
0534 %     - no                      [Assume that Hessian changes]
0535 %     - yes                     [Assume that Hessian is constant]
0536 %
0537 %
0538 %
0539 % ### Initialization ###
0540 %
0541 % bound_push                             0 <  (       0.01) <  +inf
0542 %    Desired minimum absolute distance from the initial point to bound.
0543 %      Determines how much the initial point might have to be modified in order
0544 %      to be sufficiently inside the bounds (together with "bound_frac").  (This
0545 %      is kappa_1 in Section 3.6 of implementation paper.)
0546 %
0547 % bound_frac                             0 <  (       0.01) <= 0.5
0548 %    Desired minimum relative distance from the initial point to bound.
0549 %      Determines how much the initial point might have to be modified in order
0550 %      to be sufficiently inside the bounds (together with "bound_push").  (This
0551 %      is kappa_2 in Section 3.6 of implementation paper.)
0552 %
0553 % slack_bound_push                       0 <  (       0.01) <  +inf
0554 %    Desired minimum absolute distance from the initial slack to bound.
0555 %      Determines how much the initial slack variables might have to be modified
0556 %      in order to be sufficiently inside the inequality bounds (together with
0557 %      "slack_bound_frac").  (This is kappa_1 in Section 3.6 of implementation
0558 %      paper.)
0559 %
0560 % slack_bound_frac                       0 <  (       0.01) <= 0.5
0561 %    Desired minimum relative distance from the initial slack to bound.
0562 %      Determines how much the initial slack variables might have to be modified
0563 %      in order to be sufficiently inside the inequality bounds (together with
0564 %      "slack_bound_push").  (This is kappa_2 in Section 3.6 of implementation
0565 %      paper.)
0566 %
0567 % constr_mult_init_max                   0 <= (       1000) <  +inf
0568 %    Maximum allowed least-square guess of constraint multipliers.
0569 %      Determines how large the initial least-square guesses of the constraint
0570 %      multipliers are allowed to be (in max-norm). If the guess is larger than
0571 %      this value, it is discarded and all constraint multipliers are set to
0572 %      zero.  This options is also used when initializing the restoration phase.
0573 %      By default, "resto.constr_mult_init_max" (the one used in
0574 %      RestoIterateInitializer) is set to zero.
0575 %
0576 % bound_mult_init_val                    0 <  (          1) <  +inf
0577 %    Initial value for the bound multipliers.
0578 %      All dual variables corresponding to bound constraints are initialized to
0579 %      this value.
0580 %
0581 % bound_mult_init_method        ("constant")
0582 %    Initialization method for bound multipliers
0583 %      This option defines how the iterates for the bound multipliers are
0584 %      initialized.  If "constant" is chosen, then all bound multipliers are
0585 %      initialized to the value of "bound_mult_init_val".  If "mu-based" is
0586 %      chosen, the each value is initialized to the the value of "mu_init"
0587 %      divided by the corresponding slack variable.  This latter option might be
0588 %      useful if the starting point is close to the optimal solution.
0589 %    Possible values:
0590 %     - constant                [set all bound multipliers to the value of
0591 %                                bound_mult_init_val]
0592 %     - mu-based                [initialize to mu_init/x_slack]
0593 %
0594 % least_square_init_primal      ("no")
0595 %    Least square initialization of the primal variables
0596 %      If set to yes, Ipopt ignores the user provided point and solves a least
0597 %      square problem for the primal variables (x and s), to fit the linearized
0598 %      equality and inequality constraints.  This might be useful if the user
0599 %      doesn't know anything about the starting point, or for solving an LP or
0600 %      QP.
0601 %    Possible values:
0602 %     - no                      [take user-provided point]
0603 %     - yes                     [overwrite user-provided point with least-square
0604 %                                estimates]
0605 %
0606 % least_square_init_duals       ("no")
0607 %    Least square initialization of all dual variables
0608 %      If set to yes, Ipopt tries to compute least-square multipliers
0609 %      (considering ALL dual variables).  If successful, the bound multipliers
0610 %      are possibly corrected to be at least bound_mult_init_val. This might be
0611 %      useful if the user doesn't know anything about the starting point, or for
0612 %      solving an LP or QP.  This overwrites option "bound_mult_init_method".
0613 %    Possible values:
0614 %     - no                      [use bound_mult_init_val and least-square
0615 %                                equality constraint multipliers]
0616 %     - yes                     [overwrite user-provided point with least-square
0617 %                                estimates]
0618 %
0619 %
0620 %
0621 % ### Barrier Parameter Update ###
0622 %
0623 % mu_max_fact                            0 <  (       1000) <  +inf
0624 %    Factor for initialization of maximum value for barrier parameter.
0625 %      This option determines the upper bound on the barrier parameter.  This
0626 %      upper bound is computed as the average complementarity at the initial
0627 %      point times the value of this option. (Only used if option "mu_strategy"
0628 %      is chosen as "adaptive".)
0629 %
0630 % mu_max                                 0 <  (     100000) <  +inf
0631 %    Maximum value for barrier parameter.
0632 %      This option specifies an upper bound on the barrier parameter in the
0633 %      adaptive mu selection mode.  If this option is set, it overwrites the
0634 %      effect of mu_max_fact. (Only used if option "mu_strategy" is chosen as
0635 %      "adaptive".)
0636 %
0637 % mu_min                                 0 <  (      1e-11) <  +inf
0638 %    Minimum value for barrier parameter.
0639 %      This option specifies the lower bound on the barrier parameter in the
0640 %      adaptive mu selection mode. By default, it is set to the minimum of 1e-11
0641 %      and min("tol","compl_inf_tol")/("barrier_tol_factor"+1), which should be
0642 %      a reasonable value. (Only used if option "mu_strategy" is chosen as
0643 %      "adaptive".)
0644 %
0645 % adaptive_mu_globalization     ("obj-constr-filter")
0646 %    Globalization strategy for the adaptive mu selection mode.
0647 %      To achieve global convergence of the adaptive version, the algorithm has
0648 %      to switch to the monotone mode (Fiacco-McCormick approach) when
0649 %      convergence does not seem to appear.  This option sets the criterion used
0650 %      to decide when to do this switch. (Only used if option "mu_strategy" is
0651 %      chosen as "adaptive".)
0652 %    Possible values:
0653 %     - kkt-error               [nonmonotone decrease of kkt-error]
0654 %     - obj-constr-filter       [2-dim filter for objective and constraint
0655 %                                violation]
0656 %     - never-monotone-mode     [disables globalization]
0657 %
0658 % adaptive_mu_kkterror_red_iters         0 <= (          4) <  +inf
0659 %    Maximum number of iterations requiring sufficient progress.
0660 %      For the "kkt-error" based globalization strategy, sufficient progress
0661 %      must be made for "adaptive_mu_kkterror_red_iters" iterations. If this
0662 %      number of iterations is exceeded, the globalization strategy switches to
0663 %      the monotone mode.
0664 %
0665 % adaptive_mu_kkterror_red_fact          0 <  (     0.9999) <  1
0666 %    Sufficient decrease factor for "kkt-error" globalization strategy.
0667 %      For the "kkt-error" based globalization strategy, the error must decrease
0668 %      by this factor to be deemed sufficient decrease.
0669 %
0670 % filter_margin_fact                     0 <  (      1e-05) <  1
0671 %    Factor determining width of margin for obj-constr-filter adaptive
0672 %    globalization strategy.
0673 %      When using the adaptive globalization strategy, "obj-constr-filter",
0674 %      sufficient progress for a filter entry is defined as follows: (new obj) <
0675 %      (filter obj) - filter_margin_fact*(new constr-viol) OR (new constr-viol)
0676 %      < (filter constr-viol) - filter_margin_fact*(new constr-viol).  For the
0677 %      description of the "kkt-error-filter" option see "filter_max_margin".
0678 %
0679 % filter_max_margin                      0 <  (          1) <  +inf
0680 %    Maximum width of margin in obj-constr-filter adaptive globalization
0681 %    strategy.
0682 %
0683 % adaptive_mu_restore_previous_iterate("no")
0684 %    Indicates if the previous iterate should be restored if the monotone mode
0685 %    is entered.
0686 %      When the globalization strategy for the adaptive barrier algorithm
0687 %      switches to the monotone mode, it can either start from the most recent
0688 %      iterate (no), or from the last iterate that was accepted (yes).
0689 %    Possible values:
0690 %     - no                      [don't restore accepted iterate]
0691 %     - yes                     [restore accepted iterate]
0692 %
0693 % adaptive_mu_monotone_init_factor         0 <  (        0.8) <  +inf
0694 %    Determines the initial value of the barrier parameter when switching to the
0695 %    monotone mode.
0696 %      When the globalization strategy for the adaptive barrier algorithm
0697 %      switches to the monotone mode and fixed_mu_oracle is chosen as
0698 %      "average_compl", the barrier parameter is set to the current average
0699 %      complementarity times the value of "adaptive_mu_monotone_init_factor".
0700 %
0701 % adaptive_mu_kkt_norm_type     ("2-norm-squared")
0702 %    Norm used for the KKT error in the adaptive mu globalization strategies.
0703 %      When computing the KKT error for the globalization strategies, the norm
0704 %      to be used is specified with this option. Note, this options is also used
0705 %      in the QualityFunctionMuOracle.
0706 %    Possible values:
0707 %     - 1-norm                  [use the 1-norm (abs sum)]
0708 %     - 2-norm-squared          [use the 2-norm squared (sum of squares)]
0709 %     - max-norm                [use the infinity norm (max)]
0710 %     - 2-norm                  [use 2-norm]
0711 %
0712 % mu_strategy                   ("monotone")
0713 %    Update strategy for barrier parameter.
0714 %      Determines which barrier parameter update strategy is to be used.
0715 %    Possible values:
0716 %     - monotone                [use the monotone (Fiacco-McCormick) strategy]
0717 %     - adaptive                [use the adaptive update strategy]
0718 %
0719 % mu_oracle                     ("quality-function")
0720 %    Oracle for a new barrier parameter in the adaptive strategy.
0721 %      Determines how a new barrier parameter is computed in each "free-mode"
0722 %      iteration of the adaptive barrier parameter strategy. (Only considered if
0723 %      "adaptive" is selected for option "mu_strategy").
0724 %    Possible values:
0725 %     - probing                 [Mehrotra's probing heuristic]
0726 %     - loqo                    [LOQO's centrality rule]
0727 %     - quality-function        [minimize a quality function]
0728 %
0729 % fixed_mu_oracle               ("average_compl")
0730 %    Oracle for the barrier parameter when switching to fixed mode.
0731 %      Determines how the first value of the barrier parameter should be
0732 %      computed when switching to the "monotone mode" in the adaptive strategy.
0733 %      (Only considered if "adaptive" is selected for option "mu_strategy".)
0734 %    Possible values:
0735 %     - probing                 [Mehrotra's probing heuristic]
0736 %     - loqo                    [LOQO's centrality rule]
0737 %     - quality-function        [minimize a quality function]
0738 %     - average_compl           [base on current average complementarity]
0739 %
0740 % mu_init                                0 <  (        0.1) <  +inf
0741 %    Initial value for the barrier parameter.
0742 %      This option determines the initial value for the barrier parameter (mu).
0743 %      It is only relevant in the monotone, Fiacco-McCormick version of the
0744 %      algorithm. (i.e., if "mu_strategy" is chosen as "monotone")
0745 %
0746 % barrier_tol_factor                     0 <  (         10) <  +inf
0747 %    Factor for mu in barrier stop test.
0748 %      The convergence tolerance for each barrier problem in the monotone mode
0749 %      is the value of the barrier parameter times "barrier_tol_factor". This
0750 %      option is also used in the adaptive mu strategy during the monotone mode.
0751 %      (This is kappa_epsilon in implementation paper).
0752 %
0753 % mu_linear_decrease_factor              0 <  (        0.2) <  1
0754 %    Determines linear decrease rate of barrier parameter.
0755 %      For the Fiacco-McCormick update procedure the new barrier parameter mu is
0756 %      obtained by taking the minimum of mu*"mu_linear_decrease_factor" and
0757 %      mu^"superlinear_decrease_power".  (This is kappa_mu in implementation
0758 %      paper.) This option is also used in the adaptive mu strategy during the
0759 %      monotone mode.
0760 %
0761 % mu_superlinear_decrease_power          1 <  (        1.5) <  2
0762 %    Determines superlinear decrease rate of barrier parameter.
0763 %      For the Fiacco-McCormick update procedure the new barrier parameter mu is
0764 %      obtained by taking the minimum of mu*"mu_linear_decrease_factor" and
0765 %      mu^"superlinear_decrease_power".  (This is theta_mu in implementation
0766 %      paper.) This option is also used in the adaptive mu strategy during the
0767 %      monotone mode.
0768 %
0769 % mu_allow_fast_monotone_decrease("yes")
0770 %    Allow skipping of barrier problem if barrier test is already met.
0771 %      If set to "no", the algorithm enforces at least one iteration per barrier
0772 %      problem, even if the barrier test is already met for the updated barrier
0773 %      parameter.
0774 %    Possible values:
0775 %     - no                      [Take at least one iteration per barrier problem]
0776 %     - yes                     [Allow fast decrease of mu if barrier test it met]
0777 %
0778 % tau_min                                0 <  (       0.99) <  1
0779 %    Lower bound on fraction-to-the-boundary parameter tau.
0780 %      (This is tau_min in the implementation paper.)  This option is also used
0781 %      in the adaptive mu strategy during the monotone mode.
0782 %
0783 % sigma_max                              0 <  (        100) <  +inf
0784 %    Maximum value of the centering parameter.
0785 %      This is the upper bound for the centering parameter chosen by the quality
0786 %      function based barrier parameter update. (Only used if option "mu_oracle"
0787 %      is set to "quality-function".)
0788 %
0789 % sigma_min                              0 <= (      1e-06) <  +inf
0790 %    Minimum value of the centering parameter.
0791 %      This is the lower bound for the centering parameter chosen by the quality
0792 %      function based barrier parameter update. (Only used if option "mu_oracle"
0793 %      is set to "quality-function".)
0794 %
0795 % quality_function_norm_type    ("2-norm-squared")
0796 %    Norm used for components of the quality function.
0797 %      (Only used if option "mu_oracle" is set to "quality-function".)
0798 %    Possible values:
0799 %     - 1-norm                  [use the 1-norm (abs sum)]
0800 %     - 2-norm-squared          [use the 2-norm squared (sum of squares)]
0801 %     - max-norm                [use the infinity norm (max)]
0802 %     - 2-norm                  [use 2-norm]
0803 %
0804 % quality_function_centrality   ("none")
0805 %    The penalty term for centrality that is included in quality function.
0806 %      This determines whether a term is added to the quality function to
0807 %      penalize deviation from centrality with respect to complementarity.  The
0808 %      complementarity measure here is the xi in the Loqo update rule. (Only
0809 %      used if option "mu_oracle" is set to "quality-function".)
0810 %    Possible values:
0811 %     - none                    [no penalty term is added]
0812 %     - log                     [complementarity * the log of the centrality
0813 %                                measure]
0814 %     - reciprocal              [complementarity * the reciprocal of the
0815 %                                centrality measure]
0816 %     - cubed-reciprocal        [complementarity * the reciprocal of the
0817 %                                centrality measure cubed]
0818 %
0819 % quality_function_balancing_term("none")
0820 %    The balancing term included in the quality function for centrality.
0821 %      This determines whether a term is added to the quality function that
0822 %      penalizes situations where the complementarity is much smaller than dual
0823 %      and primal infeasibilities. (Only used if option "mu_oracle" is set to
0824 %      "quality-function".)
0825 %    Possible values:
0826 %     - none                    [no balancing term is added]
0827 %     - cubic                   [Max(0,Max(dual_inf,primal_inf)-compl)^3]
0828 %
0829 % quality_function_max_section_steps         0 <= (          8) <  +inf
0830 %    Maximum number of search steps during direct search procedure determining
0831 %    the optimal centering parameter.
0832 %      The golden section search is performed for the quality function based mu
0833 %      oracle. (Only used if option "mu_oracle" is set to "quality-function".)
0834 %
0835 % quality_function_section_sigma_tol         0 <= (       0.01) <  1
0836 %    Tolerance for the section search procedure determining the optimal
0837 %    centering parameter (in sigma space).
0838 %      The golden section search is performed for the quality function based mu
0839 %      oracle. (Only used if option "mu_oracle" is set to "quality-function".)
0840 %
0841 % quality_function_section_qf_tol         0 <= (          0) <  1
0842 %    Tolerance for the golden section search procedure determining the optimal
0843 %    centering parameter (in the function value space).
0844 %      The golden section search is performed for the quality function based mu
0845 %      oracle. (Only used if option "mu_oracle" is set to "quality-function".)
0846 %
0847 %
0848 %
0849 % ### Line Search ###
0850 %
0851 % alpha_red_factor                       0 <  (        0.5) <  1
0852 %    Fractional reduction of the trial step size in the backtracking line search.
0853 %      At every step of the backtracking line search, the trial step size is
0854 %      reduced by this factor.
0855 %
0856 % accept_every_trial_step       ("no")
0857 %    Always accept the first trial step.
0858 %      Setting this option to "yes" essentially disables the line search and
0859 %      makes the algorithm take aggressive steps, without global convergence
0860 %      guarantees.
0861 %    Possible values:
0862 %     - no                      [don't arbitrarily accept the full step]
0863 %     - yes                     [always accept the full step]
0864 %
0865 % accept_after_max_steps                -1 <= (         -1) <  +inf
0866 %    Accept a trial point after maximal this number of steps.
0867 %      Even if it does not satisfy line search conditions.
0868 %
0869 % alpha_for_y                   ("primal")
0870 %    Method to determine the step size for constraint multipliers.
0871 %      This option determines how the step size (alpha_y) will be calculated
0872 %      when updating the constraint multipliers.
0873 %    Possible values:
0874 %     - primal                  [use primal step size]
0875 %     - bound-mult              [use step size for the bound multipliers (good
0876 %                                for LPs)]
0877 %     - min                     [use the min of primal and bound multipliers]
0878 %     - max                     [use the max of primal and bound multipliers]
0879 %     - full                    [take a full step of size one]
0880 %     - min-dual-infeas         [choose step size minimizing new dual
0881 %                                infeasibility]
0882 %     - safer-min-dual-infeas   [like "min_dual_infeas", but safeguarded by
0883 %                                "min" and "max"]
0884 %     - primal-and-full         [use the primal step size, and full step if
0885 %                                delta_x <= alpha_for_y_tol]
0886 %     - dual-and-full           [use the dual step size, and full step if
0887 %                                delta_x <= alpha_for_y_tol]
0888 %     - acceptor                [Call LSAcceptor to get step size for y]
0889 %
0890 % alpha_for_y_tol                        0 <= (         10) <  +inf
0891 %    Tolerance for switching to full equality multiplier steps.
0892 %      This is only relevant if "alpha_for_y" is chosen "primal-and-full" or
0893 %      "dual-and-full".  The step size for the equality constraint multipliers
0894 %      is taken to be one if the max-norm of the primal step is less than this
0895 %      tolerance.
0896 %
0897 % tiny_step_tol                          0 <= (2.22045e-15) <  +inf
0898 %    Tolerance for detecting numerically insignificant steps.
0899 %      If the search direction in the primal variables (x and s) is, in relative
0900 %      terms for each component, less than this value, the algorithm accepts the
0901 %      full step without line search.  If this happens repeatedly, the algorithm
0902 %      will terminate with a corresponding exit message. The default value is 10
0903 %      times machine precision.
0904 %
0905 % tiny_step_y_tol                        0 <= (       0.01) <  +inf
0906 %    Tolerance for quitting because of numerically insignificant steps.
0907 %      If the search direction in the primal variables (x and s) is, in relative
0908 %      terms for each component, repeatedly less than tiny_step_tol, and the
0909 %      step in the y variables is smaller than this threshold, the algorithm
0910 %      will terminate.
0911 %
0912 % watchdog_shortened_iter_trigger         0 <= (         10) <  +inf
0913 %    Number of shortened iterations that trigger the watchdog.
0914 %      If the number of successive iterations in which the backtracking line
0915 %      search did not accept the first trial point exceeds this number, the
0916 %      watchdog procedure is activated.  Choosing "0" here disables the watchdog
0917 %      procedure.
0918 %
0919 % watchdog_trial_iter_max                1 <= (          3) <  +inf
0920 %    Maximum number of watchdog iterations.
0921 %      This option determines the number of trial iterations allowed before the
0922 %      watchdog procedure is aborted and the algorithm returns to the stored
0923 %      point.
0924 %
0925 % theta_max_fact                         0 <  (      10000) <  +inf
0926 %    Determines upper bound for constraint violation in the filter.
0927 %      The algorithmic parameter theta_max is determined as theta_max_fact times
0928 %      the maximum of 1 and the constraint violation at initial point.  Any
0929 %      point with a constraint violation larger than theta_max is unacceptable
0930 %      to the filter (see Eqn. (21) in the implementation paper).
0931 %
0932 % theta_min_fact                         0 <  (     0.0001) <  +inf
0933 %    Determines constraint violation threshold in the switching rule.
0934 %      The algorithmic parameter theta_min is determined as theta_min_fact times
0935 %      the maximum of 1 and the constraint violation at initial point.  The
0936 %      switching rules treats an iteration as an h-type iteration whenever the
0937 %      current constraint violation is larger than theta_min (see paragraph
0938 %      before Eqn. (19) in the implementation paper).
0939 %
0940 % eta_phi                                0 <  (      1e-08) <  0.5
0941 %    Relaxation factor in the Armijo condition.
0942 %      (See Eqn. (20) in the implementation paper)
0943 %
0944 % delta                                  0 <  (          1) <  +inf
0945 %    Multiplier for constraint violation in the switching rule.
0946 %      (See Eqn. (19) in the implementation paper.)
0947 %
0948 % s_phi                                  1 <  (        2.3) <  +inf
0949 %    Exponent for linear barrier function model in the switching rule.
0950 %      (See Eqn. (19) in the implementation paper.)
0951 %
0952 % s_theta                                1 <  (        1.1) <  +inf
0953 %    Exponent for current constraint violation in the switching rule.
0954 %      (See Eqn. (19) in the implementation paper.)
0955 %
0956 % gamma_phi                              0 <  (      1e-08) <  1
0957 %    Relaxation factor in the filter margin for the barrier function.
0958 %      (See Eqn. (18a) in the implementation paper.)
0959 %
0960 % gamma_theta                            0 <  (      1e-05) <  1
0961 %    Relaxation factor in the filter margin for the constraint violation.
0962 %      (See Eqn. (18b) in the implementation paper.)
0963 %
0964 % alpha_min_frac                         0 <  (       0.05) <  1
0965 %    Safety factor for the minimal step size (before switching to restoration
0966 %    phase).
0967 %      (This is gamma_alpha in Eqn. (20) in the implementation paper.)
0968 %
0969 % max_soc                                0 <= (          4) <  +inf
0970 %    Maximum number of second order correction trial steps at each iteration.
0971 %      Choosing 0 disables the second order corrections. (This is p^{max} of
0972 %      Step A-5.9 of Algorithm A in the implementation paper.)
0973 %
0974 % kappa_soc                              0 <  (       0.99) <  +inf
0975 %    Factor in the sufficient reduction rule for second order correction.
0976 %      This option determines how much a second order correction step must
0977 %      reduce the constraint violation so that further correction steps are
0978 %      attempted.  (See Step A-5.9 of Algorithm A in the implementation paper.)
0979 %
0980 % obj_max_inc                            1 <  (          5) <  +inf
0981 %    Determines the upper bound on the acceptable increase of barrier objective
0982 %    function.
0983 %      Trial points are rejected if they lead to an increase in the barrier
0984 %      objective function by more than obj_max_inc orders of magnitude.
0985 %
0986 % max_filter_resets                      0 <= (          5) <  +inf
0987 %    Maximal allowed number of filter resets
0988 %      A positive number enables a heuristic that resets the filter, whenever in
0989 %      more than "filter_reset_trigger" successive iterations the last rejected
0990 %      trial steps size was rejected because of the filter.  This option
0991 %      determine the maximal number of resets that are allowed to take place.
0992 %
0993 % filter_reset_trigger                   1 <= (          5) <  +inf
0994 %    Number of iterations that trigger the filter reset.
0995 %      If the filter reset heuristic is active and the number of successive
0996 %      iterations in which the last rejected trial step size was rejected
0997 %      because of the filter, the filter is reset.
0998 %
0999 % corrector_type                ("none")
1000 %    The type of corrector steps that should be taken (unsupported!).
1001 %      If "mu_strategy" is "adaptive", this option determines what kind of
1002 %      corrector steps should be tried.
1003 %    Possible values:
1004 %     - none                    [no corrector]
1005 %     - affine                  [corrector step towards mu=0]
1006 %     - primal-dual             [corrector step towards current mu]
1007 %
1008 % skip_corr_if_neg_curv         ("yes")
1009 %    Skip the corrector step in negative curvature iteration (unsupported!).
1010 %      The corrector step is not tried if negative curvature has been
1011 %      encountered during the computation of the search direction in the current
1012 %      iteration. This option is only used if "mu_strategy" is "adaptive".
1013 %    Possible values:
1014 %     - no                      [don't skip]
1015 %     - yes                     [skip]
1016 %
1017 % skip_corr_in_monotone_mode    ("yes")
1018 %    Skip the corrector step during monotone barrier parameter mode
1019 %    (unsupported!).
1020 %      The corrector step is not tried if the algorithm is currently in the
1021 %      monotone mode (see also option "barrier_strategy").This option is only
1022 %      used if "mu_strategy" is "adaptive".
1023 %    Possible values:
1024 %     - no                      [don't skip]
1025 %     - yes                     [skip]
1026 %
1027 % corrector_compl_avrg_red_fact          0 <  (          1) <  +inf
1028 %    Complementarity tolerance factor for accepting corrector step
1029 %    (unsupported!).
1030 %      This option determines the factor by which complementarity is allowed to
1031 %      increase for a corrector step to be accepted.
1032 %
1033 % nu_init                                0 <  (      1e-06) <  +inf
1034 %    Initial value of the penalty parameter.
1035 %
1036 % nu_inc                                 0 <  (     0.0001) <  +inf
1037 %    Increment of the penalty parameter.
1038 %
1039 % rho                                    0 <  (        0.1) <  1
1040 %    Value in penalty parameter update formula.
1041 %
1042 % kappa_sigma                            0 <  (      1e+10) <  +inf
1043 %    Factor limiting the deviation of dual variables from primal estimates.
1044 %      If the dual variables deviate from their primal estimates, a correction
1045 %      is performed. (See Eqn. (16) in the implementation paper.) Setting the
1046 %      value to less than 1 disables the correction.
1047 %
1048 % recalc_y                      ("no")
1049 %    Tells the algorithm to recalculate the equality and inequality multipliers
1050 %    as least square estimates.
1051 %      This asks the algorithm to recompute the multipliers, whenever the
1052 %      current infeasibility is less than recalc_y_feas_tol. Choosing yes might
1053 %      be helpful in the quasi-Newton option.  However, each recalculation
1054 %      requires an extra factorization of the linear system.  If a limited
1055 %      memory quasi-Newton option is chosen, this is used by default.
1056 %    Possible values:
1057 %     - no                      [use the Newton step to update the multipliers]
1058 %     - yes                     [use least-square multiplier estimates]
1059 %
1060 % recalc_y_feas_tol                      0 <  (      1e-06) <  +inf
1061 %    Feasibility threshold for recomputation of multipliers.
1062 %      If recalc_y is chosen and the current infeasibility is less than this
1063 %      value, then the multipliers are recomputed.
1064 %
1065 % slack_move                             0 <= (1.81899e-12) <  +inf
1066 %    Correction size for very small slacks.
1067 %      Due to numerical issues or the lack of an interior, the slack variables
1068 %      might become very small.  If a slack becomes very small compared to
1069 %      machine precision, the corresponding bound is moved slightly.  This
1070 %      parameter determines how large the move should be.  Its default value is
1071 %      mach_eps^{3/4}.  (See also end of Section 3.5 in implementation paper -
1072 %      but actual implementation might be somewhat different.)
1073 %
1074 %
1075 %
1076 % ### Warm Start ###
1077 %
1078 % warm_start_init_point         ("no")
1079 %    Warm-start for initial point
1080 %      Indicates whether this optimization should use a warm start
1081 %      initialization, where values of primal and dual variables are given
1082 %      (e.g., from a previous optimization of a related problem.)
1083 %    Possible values:
1084 %     - no                      [do not use the warm start initialization]
1085 %     - yes                     [use the warm start initialization]
1086 %
1087 % warm_start_same_structure     ("no")
1088 %    Indicates whether a problem with a structure identical to the previous one
1089 %    is to be solved.
1090 %      If "yes" is chosen, then the algorithm assumes that an NLP is now to be
1091 %      solved, whose structure is identical to one that already was considered
1092 %      (with the same NLP object).
1093 %    Possible values:
1094 %     - no                      [Assume this is a new problem.]
1095 %     - yes                     [Assume this is problem has known structure]
1096 %
1097 % warm_start_bound_push                  0 <  (      0.001) <  +inf
1098 %    same as bound_push for the regular initializer.
1099 %
1100 % warm_start_bound_frac                  0 <  (      0.001) <= 0.5
1101 %    same as bound_frac for the regular initializer.
1102 %
1103 % warm_start_slack_bound_push            0 <  (      0.001) <  +inf
1104 %    same as slack_bound_push for the regular initializer.
1105 %
1106 % warm_start_slack_bound_frac            0 <  (      0.001) <= 0.5
1107 %    same as slack_bound_frac for the regular initializer.
1108 %
1109 % warm_start_mult_bound_push             0 <  (      0.001) <  +inf
1110 %    same as mult_bound_push for the regular initializer.
1111 %
1112 % warm_start_mult_init_max            -inf <  (      1e+06) <  +inf
1113 %    Maximum initial value for the equality multipliers.
1114 %
1115 % warm_start_entire_iterate     ("no")
1116 %    Tells algorithm whether to use the GetWarmStartIterate method in the NLP.
1117 %    Possible values:
1118 %     - no                      [call GetStartingPoint in the NLP]
1119 %     - yes                     [call GetWarmStartIterate in the NLP]
1120 %
1121 %
1122 %
1123 % ### Linear Solver ###
1124 %
1125 % linear_solver                 ("mumps")
1126 %    Linear solver used for step computations.
1127 %      Determines which linear algebra package is to be used for the solution of
1128 %      the augmented linear system (for obtaining the search directions). Note,
1129 %      the code must have been compiled with the linear solver you want to
1130 %      choose. Depending on your Ipopt installation, not all options are
1131 %      available.
1132 %    Possible values:
1133 %     - ma27                    [use the Harwell routine MA27]
1134 %     - ma57                    [use the Harwell routine MA57]
1135 %     - pardiso                 [use the Pardiso package]
1136 %     - wsmp                    [use WSMP package]
1137 %     - mumps                   [use MUMPS package]
1138 %     - custom                  [use custom linear solver]
1139 %
1140 % linear_system_scaling         ("none")
1141 %    Method for scaling the linear system.
1142 %      Determines the method used to compute symmetric scaling factors for the
1143 %      augmented system (see also the "linear_scaling_on_demand" option).  This
1144 %      scaling is independent of the NLP problem scaling.  By default, MC19 is
1145 %      only used if MA27 or MA57 are selected as linear solvers. This option is
1146 %      only available if Ipopt has been compiled with MC19.
1147 %    Possible values:
1148 %     - none                    [no scaling will be performed]
1149 %     - mc19                    [use the Harwell routine MC19]
1150 %
1151 % linear_scaling_on_demand      ("yes")
1152 %    Flag indicating that linear scaling is only done if it seems required.
1153 %      This option is only important if a linear scaling method (e.g., mc19) is
1154 %      used.  If you choose "no", then the scaling factors are computed for
1155 %      every linear system from the start.  This can be quite expensive.
1156 %      Choosing "yes" means that the algorithm will start the scaling method
1157 %      only when the solutions to the linear system seem not good, and then use
1158 %      it until the end.
1159 %    Possible values:
1160 %     - no                      [Always scale the linear system.]
1161 %     - yes                     [Start using linear system scaling if solutions
1162 %                                seem not good.]
1163 %
1164 %
1165 %
1166 % ### Step Calculation ###
1167 %
1168 % mehrotra_algorithm            ("no")
1169 %    Indicates if we want to do Mehrotra's algorithm.
1170 %      If set to yes, Ipopt runs as Mehrotra's predictor-corrector algorithm.
1171 %      This works usually very well for LPs and convex QPs.  This automatically
1172 %      disables the line search, and chooses the (unglobalized) adaptive mu
1173 %      strategy with the "probing" oracle, and uses "corrector_type=affine"
1174 %      without any safeguards; you should not set any of those options
1175 %      explicitly in addition.  Also, unless otherwise specified, the values of
1176 %      "bound_push", "bound_frac", and "bound_mult_init_val" are set more
1177 %      aggressive, and sets "alpha_for_y=bound_mult".
1178 %    Possible values:
1179 %     - no                      [Do the usual Ipopt algorithm.]
1180 %     - yes                     [Do Mehrotra's predictor-corrector algorithm.]
1181 %
1182 % fast_step_computation         ("no")
1183 %    Indicates if the linear system should be solved quickly.
1184 %      If set to yes, the algorithm assumes that the linear system that is
1185 %      solved to obtain the search direction, is solved sufficiently well. In
1186 %      that case, no residuals are computed, and the computation of the search
1187 %      direction is a little faster.
1188 %    Possible values:
1189 %     - no                      [Verify solution of linear system by computing
1190 %                                residuals.]
1191 %     - yes                     [Trust that linear systems are solved well.]
1192 %
1193 % min_refinement_steps                   0 <= (          1) <  +inf
1194 %    Minimum number of iterative refinement steps per linear system solve.
1195 %      Iterative refinement (on the full unsymmetric system) is performed for
1196 %      each right hand side.  This option determines the minimum number of
1197 %      iterative refinements (i.e. at least "min_refinement_steps" iterative
1198 %      refinement steps are enforced per right hand side.)
1199 %
1200 % max_refinement_steps                   0 <= (         10) <  +inf
1201 %    Maximum number of iterative refinement steps per linear system solve.
1202 %      Iterative refinement (on the full unsymmetric system) is performed for
1203 %      each right hand side.  This option determines the maximum number of
1204 %      iterative refinement steps.
1205 %
1206 % residual_ratio_max                     0 <  (      1e-10) <  +inf
1207 %    Iterative refinement tolerance
1208 %      Iterative refinement is performed until the residual test ratio is less
1209 %      than this tolerance (or until "max_refinement_steps" refinement steps are
1210 %      performed).
1211 %
1212 % residual_ratio_singular                0 <  (      1e-05) <  +inf
1213 %    Threshold for declaring linear system singular after failed iterative
1214 %    refinement.
1215 %      If the residual test ratio is larger than this value after failed
1216 %      iterative refinement, the algorithm pretends that the linear system is
1217 %      singular.
1218 %
1219 % residual_improvement_factor            0 <  (          1) <  +inf
1220 %    Minimal required reduction of residual test ratio in iterative refinement.
1221 %      If the improvement of the residual test ratio made by one iterative
1222 %      refinement step is not better than this factor, iterative refinement is
1223 %      aborted.
1224 %
1225 % neg_curv_test_tol                      0 <  (          0) <  +inf
1226 %    Tolerance for heuristic to ignore wrong inertia.
1227 %      If positive, incorrect inertia in the augmented system is ignored, and we
1228 %      test if the direction is a direction of positive curvature.  This
1229 %      tolerance determines when the direction is considered to be sufficiently
1230 %      positive.
1231 %
1232 % max_hessian_perturbation               0 <  (      1e+20) <  +inf
1233 %    Maximum value of regularization parameter for handling negative curvature.
1234 %      In order to guarantee that the search directions are indeed proper
1235 %      descent directions, Ipopt requires that the inertia of the (augmented)
1236 %      linear system for the step computation has the correct number of negative
1237 %      and positive eigenvalues. The idea is that this guides the algorithm away
1238 %      from maximizers and makes Ipopt more likely converge to first order
1239 %      optimal points that are minimizers. If the inertia is not correct, a
1240 %      multiple of the identity matrix is added to the Hessian of the Lagrangian
1241 %      in the augmented system. This parameter gives the maximum value of the
1242 %      regularization parameter. If a regularization of that size is not enough,
1243 %      the algorithm skips this iteration and goes to the restoration phase.
1244 %      (This is delta_w^max in the implementation paper.)
1245 %
1246 % min_hessian_perturbation               0 <= (      1e-20) <  +inf
1247 %    Smallest perturbation of the Hessian block.
1248 %      The size of the perturbation of the Hessian block is never selected
1249 %      smaller than this value, unless no perturbation is necessary. (This is
1250 %      delta_w^min in implementation paper.)
1251 %
1252 % perturb_inc_fact_first                 1 <  (        100) <  +inf
1253 %    Increase factor for x-s perturbation for very first perturbation.
1254 %      The factor by which the perturbation is increased when a trial value was
1255 %      not sufficient - this value is used for the computation of the very first
1256 %      perturbation and allows a different value for for the first perturbation
1257 %      than that used for the remaining perturbations. (This is bar_kappa_w^+ in
1258 %      the implementation paper.)
1259 %
1260 % perturb_inc_fact                       1 <  (          8) <  +inf
1261 %    Increase factor for x-s perturbation.
1262 %      The factor by which the perturbation is increased when a trial value was
1263 %      not sufficient - this value is used for the computation of all
1264 %      perturbations except for the first. (This is kappa_w^+ in the
1265 %      implementation paper.)
1266 %
1267 % perturb_dec_fact                       0 <  (   0.333333) <  1
1268 %    Decrease factor for x-s perturbation.
1269 %      The factor by which the perturbation is decreased when a trial value is
1270 %      deduced from the size of the most recent successful perturbation. (This
1271 %      is kappa_w^- in the implementation paper.)
1272 %
1273 % first_hessian_perturbation             0 <  (     0.0001) <  +inf
1274 %    Size of first x-s perturbation tried.
1275 %      The first value tried for the x-s perturbation in the inertia correction
1276 %      scheme.(This is delta_0 in the implementation paper.)
1277 %
1278 % jacobian_regularization_value          0 <= (      1e-08) <  +inf
1279 %    Size of the regularization for rank-deficient constraint Jacobians.
1280 %      (This is bar delta_c in the implementation paper.)
1281 %
1282 % jacobian_regularization_exponent         0 <= (       0.25) <  +inf
1283 %    Exponent for mu in the regularization for rank-deficient constraint
1284 %    Jacobians.
1285 %      (This is kappa_c in the implementation paper.)
1286 %
1287 % perturb_always_cd             ("no")
1288 %    Active permanent perturbation of constraint linearization.
1289 %      This options makes the delta_c and delta_d perturbation be used for the
1290 %      computation of every search direction.  Usually, it is only used when the
1291 %      iteration matrix is singular.
1292 %    Possible values:
1293 %     - no                      [perturbation only used when required]
1294 %     - yes                     [always use perturbation]
1295 %
1296 %
1297 %
1298 % ### Restoration Phase ###
1299 %
1300 % expect_infeasible_problem     ("no")
1301 %    Enable heuristics to quickly detect an infeasible problem.
1302 %      This options is meant to activate heuristics that may speed up the
1303 %      infeasibility determination if you expect that there is a good chance for
1304 %      the problem to be infeasible.  In the filter line search procedure, the
1305 %      restoration phase is called more quickly than usually, and more reduction
1306 %      in the constraint violation is enforced before the restoration phase is
1307 %      left. If the problem is square, this option is enabled automatically.
1308 %    Possible values:
1309 %     - no                      [the problem probably be feasible]
1310 %     - yes                     [the problem has a good chance to be infeasible]
1311 %
1312 % expect_infeasible_problem_ctol         0 <= (      0.001) <  +inf
1313 %    Threshold for disabling "expect_infeasible_problem" option.
1314 %      If the constraint violation becomes smaller than this threshold, the
1315 %      "expect_infeasible_problem" heuristics in the filter line search are
1316 %      disabled. If the problem is square, this options is set to 0.
1317 %
1318 % expect_infeasible_problem_ytol         0 <  (      1e+08) <  +inf
1319 %    Multiplier threshold for activating "expect_infeasible_problem" option.
1320 %      If the max norm of the constraint multipliers becomes larger than this
1321 %      value and "expect_infeasible_problem" is chosen, then the restoration
1322 %      phase is entered.
1323 %
1324 % start_with_resto              ("no")
1325 %    Tells algorithm to switch to restoration phase in first iteration.
1326 %      Setting this option to "yes" forces the algorithm to switch to the
1327 %      feasibility restoration phase in the first iteration. If the initial
1328 %      point is feasible, the algorithm will abort with a failure.
1329 %    Possible values:
1330 %     - no                      [don't force start in restoration phase]
1331 %     - yes                     [force start in restoration phase]
1332 %
1333 % soft_resto_pderror_reduction_factor         0 <= (     0.9999) <  +inf
1334 %    Required reduction in primal-dual error in the soft restoration phase.
1335 %      The soft restoration phase attempts to reduce the primal-dual error with
1336 %      regular steps. If the damped primal-dual step (damped only to satisfy the
1337 %      fraction-to-the-boundary rule) is not decreasing the primal-dual error by
1338 %      at least this factor, then the regular restoration phase is called.
1339 %      Choosing "0" here disables the soft restoration phase.
1340 %
1341 % max_soft_resto_iters                   0 <= (         10) <  +inf
1342 %    Maximum number of iterations performed successively in soft restoration
1343 %    phase.
1344 %      If the soft restoration phase is performed for more than so many
1345 %      iterations in a row, the regular restoration phase is called.
1346 %
1347 % required_infeasibility_reduction         0 <= (        0.9) <  1
1348 %    Required reduction of infeasibility before leaving restoration phase.
1349 %      The restoration phase algorithm is performed, until a point is found that
1350 %      is acceptable to the filter and the infeasibility has been reduced by at
1351 %      least the fraction given by this option.
1352 %
1353 % max_resto_iter                         0 <= (    3000000) <  +inf
1354 %    Maximum number of successive iterations in restoration phase.
1355 %      The algorithm terminates with an error message if the number of
1356 %      iterations successively taken in the restoration phase exceeds this
1357 %      number.
1358 %
1359 % evaluate_orig_obj_at_resto_trial("yes")
1360 %    Determines if the original objective function should be evaluated at
1361 %    restoration phase trial points.
1362 %      Setting this option to "yes" makes the restoration phase algorithm
1363 %      evaluate the objective function of the original problem at every trial
1364 %      point encountered during the restoration phase, even if this value is not
1365 %      required.  In this way, it is guaranteed that the original objective
1366 %      function can be evaluated without error at all accepted iterates;
1367 %      otherwise the algorithm might fail at a point where the restoration phase
1368 %      accepts an iterate that is good for the restoration phase problem, but
1369 %      not the original problem.  On the other hand, if the evaluation of the
1370 %      original objective is expensive, this might be costly.
1371 %    Possible values:
1372 %     - no                      [skip evaluation]
1373 %     - yes                     [evaluate at every trial point]
1374 %
1375 % resto_penalty_parameter                0 <  (       1000) <  +inf
1376 %    Penalty parameter in the restoration phase objective function.
1377 %      This is the parameter rho in equation (31a) in the Ipopt implementation
1378 %      paper.
1379 %
1380 % bound_mult_reset_threshold             0 <= (       1000) <  +inf
1381 %    Threshold for resetting bound multipliers after the restoration phase.
1382 %      After returning from the restoration phase, the bound multipliers are
1383 %      updated with a Newton step for complementarity.  Here, the change in the
1384 %      primal variables during the entire restoration phase is taken to be the
1385 %      corresponding primal Newton step. However, if after the update the
1386 %      largest bound multiplier exceeds the threshold specified by this option,
1387 %      the multipliers are all reset to 1.
1388 %
1389 % constr_mult_reset_threshold            0 <= (          0) <  +inf
1390 %    Threshold for resetting equality and inequality multipliers after
1391 %    restoration phase.
1392 %      After returning from the restoration phase, the constraint multipliers
1393 %      are recomputed by a least square estimate.  This option triggers when
1394 %      those least-square estimates should be ignored.
1395 %
1396 %
1397 %
1398 % ### Derivative Checker ###
1399 %
1400 % derivative_test               ("none")
1401 %    Enable derivative checker
1402 %      If this option is enabled, a (slow!) derivative test will be performed
1403 %      before the optimization.  The test is performed at the user provided
1404 %      starting point and marks derivative values that seem suspicious
1405 %    Possible values:
1406 %     - none                    [do not perform derivative test]
1407 %     - first-order             [perform test of first derivatives at starting
1408 %                                point]
1409 %     - second-order            [perform test of first and second derivatives at
1410 %                                starting point]
1411 %     - only-second-order       [perform test of second derivatives at starting
1412 %                                point]
1413 %
1414 % derivative_test_first_index           -2 <= (         -2) <  +inf
1415 %    Index of first quantity to be checked by derivative checker
1416 %      If this is set to -2, then all derivatives are checked.  Otherwise, for
1417 %      the first derivative test it specifies the first variable for which the
1418 %      test is done (counting starts at 0).  For second derivatives, it
1419 %      specifies the first constraint for which the test is done; counting of
1420 %      constraint indices starts at 0, and -1 refers to the objective function
1421 %      Hessian.
1422 %
1423 % derivative_test_perturbation           0 <  (      1e-08) <  +inf
1424 %    Size of the finite difference perturbation in derivative test.
1425 %      This determines the relative perturbation of the variable entries.
1426 %
1427 % derivative_test_tol                    0 <  (     0.0001) <  +inf
1428 %    Threshold for indicating wrong derivative.
1429 %      If the relative deviation of the estimated derivative from the given one
1430 %      is larger than this value, the corresponding derivative is marked as
1431 %      wrong.
1432 %
1433 % derivative_test_print_all     ("no")
1434 %    Indicates whether information for all estimated derivatives should be
1435 %    printed.
1436 %      Determines verbosity of derivative checker.
1437 %    Possible values:
1438 %     - no                      [Print only suspect derivatives]
1439 %     - yes                     [Print all derivatives]
1440 %
1441 % jacobian_approximation        ("exact")
1442 %    Specifies technique to compute constraint Jacobian
1443 %    Possible values:
1444 %     - exact                   [user-provided derivatives]
1445 %     - finite-difference-values [user-provided structure, values by finite
1446 %                                differences]
1447 %
1448 % findiff_perturbation                   0 <  (      1e-07) <  +inf
1449 %    Size of the finite difference perturbation for derivative approximation.
1450 %      This determines the relative perturbation of the variable entries.
1451 %
1452 % point_perturbation_radius              0 <= (         10) <  +inf
1453 %    Maximal perturbation of an evaluation point.
1454 %      If a random perturbation of a points is required, this number indicates
1455 %      the maximal perturbation.  This is for example used when determining the
1456 %      center point at which the finite difference derivative test is executed.
1457 %
1458 %
1459 %
1460 % ### Hessian Approximation ###
1461 %
1462 % limited_memory_max_history             0 <= (          6) <  +inf
1463 %    Maximum size of the history for the limited quasi-Newton Hessian
1464 %    approximation.
1465 %      This option determines the number of most recent iterations that are
1466 %      taken into account for the limited-memory quasi-Newton approximation.
1467 %
1468 % limited_memory_update_type    ("bfgs")
1469 %    Quasi-Newton update formula for the limited memory approximation.
1470 %      Determines which update formula is to be used for the limited-memory
1471 %      quasi-Newton approximation.
1472 %    Possible values:
1473 %     - bfgs                    [BFGS update (with skipping)]
1474 %     - sr1                     [SR1 (not working well)]
1475 %
1476 % limited_memory_initialization ("scalar1")
1477 %    Initialization strategy for the limited memory quasi-Newton approximation.
1478 %      Determines how the diagonal Matrix B_0 as the first term in the limited
1479 %      memory approximation should be computed.
1480 %    Possible values:
1481 %     - scalar1                 [sigma = s^Ty/s^Ts]
1482 %     - scalar2                 [sigma = y^Ty/s^Ty]
1483 %     - constant                [sigma = limited_memory_init_val]
1484 %
1485 % limited_memory_init_val                0 <  (          1) <  +inf
1486 %    Value for B0 in low-rank update.
1487 %      The starting matrix in the low rank update, B0, is chosen to be this
1488 %      multiple of the identity in the first iteration (when no updates have
1489 %      been performed yet), and is constantly chosen as this value, if
1490 %      "limited_memory_initialization" is "constant".
1491 %
1492 % limited_memory_init_val_max            0 <  (      1e+08) <  +inf
1493 %    Upper bound on value for B0 in low-rank update.
1494 %      The starting matrix in the low rank update, B0, is chosen to be this
1495 %      multiple of the identity in the first iteration (when no updates have
1496 %      been performed yet), and is constantly chosen as this value, if
1497 %      "limited_memory_initialization" is "constant".
1498 %
1499 % limited_memory_init_val_min            0 <  (      1e-08) <  +inf
1500 %    Lower bound on value for B0 in low-rank update.
1501 %      The starting matrix in the low rank update, B0, is chosen to be this
1502 %      multiple of the identity in the first iteration (when no updates have
1503 %      been performed yet), and is constantly chosen as this value, if
1504 %      "limited_memory_initialization" is "constant".
1505 %
1506 % limited_memory_max_skipping            1 <= (          2) <  +inf
1507 %    Threshold for successive iterations where update is skipped.
1508 %      If the update is skipped more than this number of successive iterations,
1509 %      we quasi-Newton approximation is reset.
1510 %
1511 % hessian_approximation         ("exact")
1512 %    Indicates what Hessian information is to be used.
1513 %      This determines which kind of information for the Hessian of the
1514 %      Lagrangian function is used by the algorithm.
1515 %    Possible values:
1516 %     - exact                   [Use second derivatives provided by the NLP.]
1517 %     - limited-memory          [Perform a limited-memory quasi-Newton
1518 %                                approximation]
1519 %
1520 % hessian_approximation_space   ("nonlinear-variables")
1521 %    Indicates in which subspace the Hessian information is to be approximated.
1522 %    Possible values:
1523 %     - nonlinear-variables     [only in space of nonlinear variables.]
1524 %     - all-variables           [in space of all variables (without slacks)]
1525 %
1526 %
1527 %
1528 % ### MA27 Linear Solver ###
1529 %
1530 % ma27_pivtol                            0 <  (      1e-08) <  1
1531 %    Pivot tolerance for the linear solver MA27.
1532 %      A smaller number pivots for sparsity, a larger number pivots for
1533 %      stability.  This option is only available if Ipopt has been compiled with
1534 %      MA27.
1535 %
1536 % ma27_pivtolmax                         0 <  (     0.0001) <  1
1537 %    Maximum pivot tolerance for the linear solver MA27.
1538 %      Ipopt may increase pivtol as high as pivtolmax to get a more accurate
1539 %      solution to the linear system.  This option is only available if Ipopt
1540 %      has been compiled with MA27.
1541 %
1542 % ma27_liw_init_factor                   1 <= (          5) <  +inf
1543 %    Integer workspace memory for MA27.
1544 %      The initial integer workspace memory = liw_init_factor * memory required
1545 %      by unfactored system. Ipopt will increase the workspace size by
1546 %      meminc_factor if required.  This option is only available if Ipopt has
1547 %      been compiled with MA27.
1548 %
1549 % ma27_la_init_factor                    1 <= (          5) <  +inf
1550 %    Real workspace memory for MA27.
1551 %      The initial real workspace memory = la_init_factor * memory required by
1552 %      unfactored system. Ipopt will increase the workspace size by
1553 %      meminc_factor if required.  This option is only available if  Ipopt has
1554 %      been compiled with MA27.
1555 %
1556 % ma27_meminc_factor                     1 <= (         10) <  +inf
1557 %    Increment factor for workspace size for MA27.
1558 %      If the integer or real workspace is not large enough, Ipopt will increase
1559 %      its size by this factor.  This option is only available if Ipopt has been
1560 %      compiled with MA27.
1561 %
1562 % ma27_skip_inertia_check       ("no")
1563 %    Always pretend inertia is correct.
1564 %      Setting this option to "yes" essentially disables inertia check. This
1565 %      option makes the algorithm non-robust and easily fail, but it might give
1566 %      some insight into the necessity of inertia control.
1567 %    Possible values:
1568 %     - no                      [check inertia]
1569 %     - yes                     [skip inertia check]
1570 %
1571 % ma27_ignore_singularity       ("no")
1572 %    Enables MA27's ability to solve a linear system even if the matrix is
1573 %    singular.
1574 %      Setting this option to "yes" means that Ipopt will call MA27 to compute
1575 %      solutions for right hand sides, even if MA27 has detected that the matrix
1576 %      is singular (but is still able to solve the linear system). In some cases
1577 %      this might be better than using Ipopt's heuristic of small perturbation
1578 %      of the lower diagonal of the KKT matrix.
1579 %    Possible values:
1580 %     - no                      [Don't have MA27 solve singular systems]
1581 %     - yes                     [Have MA27 solve singular systems]
1582 %
1583 %
1584 %
1585 % ### MA57 Linear Solver ###
1586 %
1587 % ma57_pivtol                            0 <  (      1e-08) <  1
1588 %    Pivot tolerance for the linear solver MA57.
1589 %      A smaller number pivots for sparsity, a larger number pivots for
1590 %      stability. This option is only available if Ipopt has been compiled with
1591 %      MA57.
1592 %
1593 % ma57_pivtolmax                         0 <  (     0.0001) <  1
1594 %    Maximum pivot tolerance for the linear solver MA57.
1595 %      Ipopt may increase pivtol as high as ma57_pivtolmax to get a more
1596 %      accurate solution to the linear system.  This option is only available if
1597 %      Ipopt has been compiled with MA57.
1598 %
1599 % ma57_pre_alloc                         1 <= (          3) <  +inf
1600 %    Safety factor for work space memory allocation for the linear solver MA57.
1601 %      If 1 is chosen, the suggested amount of work space is used.  However,
1602 %      choosing a larger number might avoid reallocation if the suggest values
1603 %      do not suffice.  This option is only available if Ipopt has been compiled
1604 %      with MA57.
1605 %
1606 % ma57_pivot_order                       0 <= (          5) <= 5
1607 %    Controls pivot order in MA57
1608 %      This is INCTL(6) in MA57.
1609 %
1610 %
1611 %
1612 % ### Pardiso Linear Solver ###
1613 %
1614 % pardiso_matching_strategy     ("complete+2x2")
1615 %    Matching strategy to be used by Pardiso
1616 %      This is IPAR(13) in Pardiso manual.  This option is only available if
1617 %      Ipopt has been compiled with Pardiso.
1618 %    Possible values:
1619 %     - complete                [Match complete (IPAR(13)=1)]
1620 %     - complete+2x2            [Match complete+2x2 (IPAR(13)=2)]
1621 %     - constraints             [Match constraints (IPAR(13)=3)]
1622 %
1623 % pardiso_redo_symbolic_fact_only_if_inertia_wrong("no")
1624 %    Toggle for handling case when elements were perturbed by Pardiso.
1625 %      This option is only available if Ipopt has been compiled with Pardiso.
1626 %    Possible values:
1627 %     - no                      [Always redo symbolic factorization when
1628 %                                elements were perturbed]
1629 %     - yes                     [Only redo symbolic factorization when elements
1630 %                                were perturbed if also the inertia was wrong]
1631 %
1632 % pardiso_repeated_perturbation_means_singular("no")
1633 %    Interpretation of perturbed elements.
1634 %      This option is only available if Ipopt has been compiled with Pardiso.
1635 %    Possible values:
1636 %     - no                      [Don't assume that matrix is singular if
1637 %                                elements were perturbed after recent symbolic
1638 %                                factorization]
1639 %     - yes                     [Assume that matrix is singular if elements were
1640 %                                perturbed after recent symbolic factorization]
1641 %
1642 % pardiso_out_of_core_power              0 <= (          0) <  +inf
1643 %    Enables out-of-core variant of Pardiso
1644 %      Setting this option to a positive integer k makes Pardiso work in the
1645 %      out-of-core variant where the factor is split in 2^k subdomains.  This is
1646 %      IPARM(50) in the Pardiso manual.  This option is only available if Ipopt
1647 %      has been compiled with Pardiso.
1648 %
1649 % pardiso_msglvl                         0 <= (          0) <  +inf
1650 %    Pardiso message level
1651 %      This determines the amount of analysis output from the Pardiso solver.
1652 %      This is MSGLVL in the Pardiso manual.
1653 %
1654 % pardiso_skip_inertia_check    ("no")
1655 %    Always pretent inertia is correct.
1656 %      Setting this option to "yes" essentially disables inertia check. This
1657 %      option makes the algorithm non-robust and easily fail, but it might give
1658 %      some insight into the necessity of inertia control.
1659 %    Possible values:
1660 %     - no                      [check inertia]
1661 %     - yes                     [skip inertia check]
1662 %
1663 % pardiso_max_iter                       1 <= (        500) <  +inf
1664 %    Maximum number of Krylov-Subspace Iteration
1665 %      DPARM(1)
1666 %
1667 % pardiso_iter_relative_tol              0 <  (      1e-06) <  1
1668 %    Relative Residual Convergence
1669 %      DPARM(2)
1670 %
1671 % pardiso_iter_coarse_size               1 <= (       5000) <  +inf
1672 %    Maximum Size of Coarse Grid Matrix
1673 %      DPARM(3)
1674 %
1675 % pardiso_iter_max_levels                1 <= (      10000) <  +inf
1676 %    Maximum Size of Grid Levels
1677 %      DPARM(4)
1678 %
1679 % pardiso_iter_dropping_factor           0 <  (        0.5) <  1
1680 %    dropping value for incomplete factor
1681 %      DPARM(5)
1682 %
1683 % pardiso_iter_dropping_schur            0 <  (        0.1) <  1
1684 %    dropping value for sparsify schur complement factor
1685 %      DPARM(6)
1686 %
1687 % pardiso_iter_max_row_fill              1 <= (   10000000) <  +inf
1688 %    max fill for each row
1689 %      DPARM(7)
1690 %
1691 % pardiso_iter_inverse_norm_factor         1 <  (      5e+06) <  +inf
1692 %
1693 %      DPARM(8)
1694 %
1695 % pardiso_iterative             ("no")
1696 %    Switch on iterative solver in Pardiso library
1697 %    Possible values:
1698 %     - no                      []
1699 %     - yes                     []
1700 %
1701 % pardiso_max_droptol_corrections         1 <= (          4) <  +inf
1702 %    Maximal number of decreases of drop tolerance during one solve.
1703 %      This is relevant only for iterative Pardiso options.
1704 %
1705 %
1706 %
1707 % ### Mumps Linear Solver ###
1708 %
1709 % mumps_pivtol                           0 <= (      1e-06) <= 1
1710 %    Pivot tolerance for the linear solver MUMPS.
1711 %      A smaller number pivots for sparsity, a larger number pivots for
1712 %      stability.  This option is only available if Ipopt has been compiled with
1713 %      MUMPS.
1714 %
1715 % mumps_pivtolmax                        0 <= (        0.1) <= 1
1716 %    Maximum pivot tolerance for the linear solver MUMPS.
1717 %      Ipopt may increase pivtol as high as pivtolmax to get a more accurate
1718 %      solution to the linear system.  This option is only available if Ipopt
1719 %      has been compiled with MUMPS.
1720 %
1721 % mumps_mem_percent                      0 <= (       1000) <  +inf
1722 %    Percentage increase in the estimated working space for MUMPS.
1723 %      In MUMPS when significant extra fill-in is caused by numerical pivoting,
1724 %      larger values of mumps_mem_percent may help use the workspace more
1725 %      efficiently.  On the other hand, if memory requirement are too large at
1726 %      the very beginning of the optimization, choosing a much smaller value for
1727 %      this option, such as 5, might reduce memory requirements.
1728 %
1729 % mumps_permuting_scaling                0 <= (          7) <= 7
1730 %    Controls permuting and scaling in MUMPS
1731 %      This is ICNTL(6) in MUMPS.
1732 %
1733 % mumps_pivot_order                      0 <= (          7) <= 7
1734 %    Controls pivot order in MUMPS
1735 %      This is ICNTL(7) in MUMPS.
1736 %
1737 % mumps_scaling                         -2 <= (         77) <= 77
1738 %    Controls scaling in MUMPS
1739 %      This is ICNTL(8) in MUMPS.
1740 %
1741 % mumps_dep_tol                       -inf <  (         -1) <  +inf
1742 %    Pivot threshold for detection of linearly dependent constraints in MUMPS.
1743 %      When MUMPS is used to determine linearly dependent constraints, this is
1744 %      determines the threshold for a pivot to be considered zero.  This is
1745 %      CNTL(3) in MUMPS.
1746 %
1747 %
1748 %
1749 % ### MA28 Linear Solver ###
1750 %
1751 % ma28_pivtol                            0 <  (       0.01) <= 1
1752 %    Pivot tolerance for linear solver MA28.
1753 %      This is used when MA28 tries to find the dependent constraints.
1754 %
1755 %
1756 %
1757 % ### Uncategorized ###
1758 %
1759 % warm_start_target_mu                -inf <  (          0) <  +inf
1760 %    Unsupported!

Generated on Mon 26-Jan-2015 15:00:13 by m2html © 2005