Home > matpower4.1 > gausspf.m

gausspf

PURPOSE ^

GAUSSPF Solves the power flow using a Gauss-Seidel method.

SYNOPSIS ^

function [V, converged, i] = gausspf(Ybus, Sbus, V0, ref, pv, pq, mpopt)

DESCRIPTION ^

GAUSSPF  Solves the power flow using a Gauss-Seidel method.
   [V, CONVERGED, I] = GAUSSPF(YBUS, SBUS, V0, REF, PV, PQ, MPOPT)
   solves for bus voltages given the full system admittance matrix (for
   all buses), the complex bus power injection vector (for all buses),
   the initial vector of complex bus voltages, and column vectors with
   the lists of bus indices for the swing bus, PV buses, and PQ buses,
   respectively. The bus voltage vector contains the set point for
   generator (including ref bus) buses, and the reference angle of the
   swing bus, as well as an initial guess for remaining magnitudes and
   angles. MPOPT is a MATPOWER options vector which can be used to 
   set the termination tolerance, maximum number of iterations, and 
   output options (see MPOPTION for details). Uses default options
   if this parameter is not given. Returns the final complex voltages,
   a flag which indicates whether it converged or not, and the number
   of iterations performed.

   See also RUNPF.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [V, converged, i] = gausspf(Ybus, Sbus, V0, ref, pv, pq, mpopt)
0002 %GAUSSPF  Solves the power flow using a Gauss-Seidel method.
0003 %   [V, CONVERGED, I] = GAUSSPF(YBUS, SBUS, V0, REF, PV, PQ, MPOPT)
0004 %   solves for bus voltages given the full system admittance matrix (for
0005 %   all buses), the complex bus power injection vector (for all buses),
0006 %   the initial vector of complex bus voltages, and column vectors with
0007 %   the lists of bus indices for the swing bus, PV buses, and PQ buses,
0008 %   respectively. The bus voltage vector contains the set point for
0009 %   generator (including ref bus) buses, and the reference angle of the
0010 %   swing bus, as well as an initial guess for remaining magnitudes and
0011 %   angles. MPOPT is a MATPOWER options vector which can be used to
0012 %   set the termination tolerance, maximum number of iterations, and
0013 %   output options (see MPOPTION for details). Uses default options
0014 %   if this parameter is not given. Returns the final complex voltages,
0015 %   a flag which indicates whether it converged or not, and the number
0016 %   of iterations performed.
0017 %
0018 %   See also RUNPF.
0019 
0020 %   MATPOWER
0021 %   $Id: gausspf.m,v 1.11 2011/12/14 17:05:18 cvs Exp $
0022 %   by Ray Zimmerman, PSERC Cornell
0023 %   and Alberto Borghetti, University of Bologna, Italy
0024 %   Copyright (c) 1996-2011 by Power System Engineering Research Center (PSERC)
0025 %
0026 %   This file is part of MATPOWER.
0027 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0028 %
0029 %   MATPOWER is free software: you can redistribute it and/or modify
0030 %   it under the terms of the GNU General Public License as published
0031 %   by the Free Software Foundation, either version 3 of the License,
0032 %   or (at your option) any later version.
0033 %
0034 %   MATPOWER is distributed in the hope that it will be useful,
0035 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0036 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0037 %   GNU General Public License for more details.
0038 %
0039 %   You should have received a copy of the GNU General Public License
0040 %   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.
0041 %
0042 %   Additional permission under GNU GPL version 3 section 7
0043 %
0044 %   If you modify MATPOWER, or any covered work, to interface with
0045 %   other modules (such as MATLAB code and MEX-files) available in a
0046 %   MATLAB(R) or comparable environment containing parts covered
0047 %   under other licensing terms, the licensors of MATPOWER grant
0048 %   you additional permission to convey the resulting work.
0049 
0050 %% default arguments
0051 if nargin < 7
0052     mpopt = mpoption;
0053 end
0054 
0055 %% options
0056 tol     = mpopt(2);
0057 max_it  = mpopt(5);
0058 verbose = mpopt(31);
0059 
0060 %% initialize
0061 converged = 0;
0062 i = 0;
0063 V = V0;
0064 Vm = abs(V);
0065 
0066 %% set up indexing for updating V
0067 npv = length(pv);
0068 npq = length(pq);
0069 
0070 %% evaluate F(x0)
0071 mis = V .* conj(Ybus * V) - Sbus;
0072 F = [   real(mis([pv; pq]));
0073         imag(mis(pq))   ];
0074 
0075 %% check tolerance
0076 normF = norm(F, inf);
0077 if verbose > 1
0078     fprintf('\n it    max P & Q mismatch (p.u.)');
0079     fprintf('\n----  ---------------------------');
0080     fprintf('\n%3d        %10.3e', i, normF);
0081 end
0082 if normF < tol
0083     converged = 1;
0084     if verbose > 1
0085         fprintf('\nConverged!\n');
0086     end
0087 end
0088 
0089 %% do Gauss-Seidel iterations
0090 while (~converged && i < max_it)
0091     %% update iteration counter
0092     i = i + 1;
0093 
0094     %% update voltage
0095     %% at PQ buses
0096     for k = pq(1:npq)'
0097         V(k) =  V(k) + (conj(Sbus(k) / V(k)) - Ybus(k,:) * V ) / Ybus(k,k);
0098     end
0099 
0100     %% at PV buses
0101     if npv
0102         for k = pv(1:npv)'
0103             Sbus(k) = real(Sbus(k)) + 1j * imag( V(k) .* conj(Ybus(k,:) * V));
0104             V(k) =  V(k) + (conj(Sbus(k) / V(k)) - Ybus(k,:) * V ) / Ybus(k,k);
0105 %           V(k) = Vm(k) * V(k) / abs(V(k));
0106         end
0107         V(pv) = Vm(pv) .* V(pv) ./ abs(V(pv));
0108     end
0109 
0110     %% evalute F(x)
0111     mis = V .* conj(Ybus * V) - Sbus;
0112     F = [   real(mis(pv));
0113             real(mis(pq));
0114             imag(mis(pq))   ];
0115 
0116     %% check for convergence
0117     normF = norm(F, inf);
0118     if verbose > 1
0119         fprintf('\n%3d        %10.3e', i, normF);
0120     end
0121     if normF < tol
0122         converged = 1;
0123         if verbose
0124             fprintf('\nGauss-Seidel power flow converged in %d iterations.\n', i);
0125         end
0126     end
0127 end
0128 
0129 if verbose
0130     if ~converged
0131         fprintf('\nGauss-Seidel power did not converge in %d iterations.\n', i);
0132     end
0133 end

Generated on Mon 26-Jan-2015 15:00:13 by m2html © 2005