Home > matpower4.0 > mp_qp.m

mp_qp

PURPOSE ^

------------------------------ deprecated ------------------------------

SYNOPSIS ^

function [xout, lambdaout, howout, success] = mp_qp(H,f,A,b,VLB,VUB,x0,N,verbose,alg,opt)

DESCRIPTION ^

------------------------------  deprecated  ------------------------------
   Use QPS_MATPOWER instead.
--------------------------------------------------------------------------
MP_QP  Quadratic program solver.
   [X, LAMBDAOUT, HOWOUT, SUCCESS] = ...
       MP_QP(H, f, A, b, VLB, VUB, X0, N, VERBOSE, ALG, OPT)

   A common wrapper for various QP solvers, using the calling syntax of
   QP from version 1 of the Optimization Toolbox, with the exception
   that verbose == 0 means no output. The optional argument alg
   determines the solver.
     alg = 100  :  BPMPD_MEX
     alg = 200  :  MIPS, MATLAB Interior Point Solver
                   pure MATLAB implementation of a primal-dual
                   interior point method
     alg = 250  :  MIPS-sc, a step controlled variant of MIPS
     alg = 300  :  Optimization Toolbox, QUADPROG or QP
     alg = 400  :  IPOPT
     alg = 500  :  CPLEX
     alg = 600  :  MOSEK
   If ALG is missing or equal to zero, the first available solver is used.
   An additional optional argument OPT can be used to set algorithm
   specific options.

   From the Optimization Toolbox v.1 docs ...
     X=QP(H,f,A,b) solves the quadratic programming problem:

          min 0.5*x'Hx + f'x   subject to:  Ax <= b 
           x

     X=QP(H,f,A,b,VLB,VUB) defines a set of lower and upper
     bounds on the design variables, X, so that the solution  
     is always in the range VLB <= X <= VUB.
  
     X=QP(H,f,A,b,VLB,VUB,X0) sets the initial starting point to X0.
  
     X=QP(H,f,A,b,VLB,VUB,X0,N) indicates that the first N constraints 
     defined by A and b are equality constraints.
  
     X=QP(H,f,A,b,VLB,VUB,X0,N,DISPLAY) controls the level of warning
     messages displayed.  Warning messages can be turned off with
     DISPLAY = -1.
  
     [x,LAMBDA]=QP(H,f,A,b) returns the set of Lagrangian multipliers,
     LAMBDA, at the solution.
  
     [X,LAMBDA,HOW] = QP(H,f,A,b) also returns a string HOW that 
     indicates error conditions at the final iteration.
  
     QP produces warning messages when the solution is either unbounded
     or infeasible.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [xout, lambdaout, howout, success] = mp_qp(H,f,A,b,VLB,VUB,x0,N,verbose,alg,opt)
0002 %------------------------------  deprecated  ------------------------------
0003 %   Use QPS_MATPOWER instead.
0004 %--------------------------------------------------------------------------
0005 %MP_QP  Quadratic program solver.
0006 %   [X, LAMBDAOUT, HOWOUT, SUCCESS] = ...
0007 %       MP_QP(H, f, A, b, VLB, VUB, X0, N, VERBOSE, ALG, OPT)
0008 %
0009 %   A common wrapper for various QP solvers, using the calling syntax of
0010 %   QP from version 1 of the Optimization Toolbox, with the exception
0011 %   that verbose == 0 means no output. The optional argument alg
0012 %   determines the solver.
0013 %     alg = 100  :  BPMPD_MEX
0014 %     alg = 200  :  MIPS, MATLAB Interior Point Solver
0015 %                   pure MATLAB implementation of a primal-dual
0016 %                   interior point method
0017 %     alg = 250  :  MIPS-sc, a step controlled variant of MIPS
0018 %     alg = 300  :  Optimization Toolbox, QUADPROG or QP
0019 %     alg = 400  :  IPOPT
0020 %     alg = 500  :  CPLEX
0021 %     alg = 600  :  MOSEK
0022 %   If ALG is missing or equal to zero, the first available solver is used.
0023 %   An additional optional argument OPT can be used to set algorithm
0024 %   specific options.
0025 %
0026 %   From the Optimization Toolbox v.1 docs ...
0027 %     X=QP(H,f,A,b) solves the quadratic programming problem:
0028 %
0029 %          min 0.5*x'Hx + f'x   subject to:  Ax <= b
0030 %           x
0031 %
0032 %     X=QP(H,f,A,b,VLB,VUB) defines a set of lower and upper
0033 %     bounds on the design variables, X, so that the solution
0034 %     is always in the range VLB <= X <= VUB.
0035 %
0036 %     X=QP(H,f,A,b,VLB,VUB,X0) sets the initial starting point to X0.
0037 %
0038 %     X=QP(H,f,A,b,VLB,VUB,X0,N) indicates that the first N constraints
0039 %     defined by A and b are equality constraints.
0040 %
0041 %     X=QP(H,f,A,b,VLB,VUB,X0,N,DISPLAY) controls the level of warning
0042 %     messages displayed.  Warning messages can be turned off with
0043 %     DISPLAY = -1.
0044 %
0045 %     [x,LAMBDA]=QP(H,f,A,b) returns the set of Lagrangian multipliers,
0046 %     LAMBDA, at the solution.
0047 %
0048 %     [X,LAMBDA,HOW] = QP(H,f,A,b) also returns a string HOW that
0049 %     indicates error conditions at the final iteration.
0050 %
0051 %     QP produces warning messages when the solution is either unbounded
0052 %     or infeasible.
0053 
0054 %   MATPOWER
0055 %   $Id: mp_qp.m,v 1.30 2010/11/23 14:27:50 cvs Exp $
0056 %   by Ray Zimmerman, PSERC Cornell
0057 %   Copyright (c) 1996-2010 by Power System Engineering Research Center (PSERC)
0058 %
0059 %   This file is part of MATPOWER.
0060 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0061 %
0062 %   MATPOWER is free software: you can redistribute it and/or modify
0063 %   it under the terms of the GNU General Public License as published
0064 %   by the Free Software Foundation, either version 3 of the License,
0065 %   or (at your option) any later version.
0066 %
0067 %   MATPOWER is distributed in the hope that it will be useful,
0068 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0069 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0070 %   GNU General Public License for more details.
0071 %
0072 %   You should have received a copy of the GNU General Public License
0073 %   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.
0074 %
0075 %   Additional permission under GNU GPL version 3 section 7
0076 %
0077 %   If you modify MATPOWER, or any covered work, to interface with
0078 %   other modules (such as MATLAB code and MEX-files) available in a
0079 %   MATLAB(R) or comparable environment containing parts covered
0080 %   under other licensing terms, the licensors of MATPOWER grant
0081 %   you additional permission to convey the resulting work.
0082 
0083 %% set up options
0084 if nargin < 11
0085     opt = [];
0086     if nargin < 10
0087         alg = 0;
0088     end
0089 end
0090 if verbose == -1
0091     verbose = 0;
0092 end
0093 qps_opt = struct('alg', alg, 'verbose', verbose);
0094 if ~isempty(opt)
0095     qps_opt.mips_opt = opt;
0096 end
0097 
0098 %% create lower limit for linear constraints
0099 m = size(A, 1);
0100 l = b;
0101 l((N+1):m) = -Inf * ones(m-N, 1);
0102 
0103 %% call solver
0104 [xout, fval, howout, output, lambda] = qps_matpower(H, f, A, l, b, VLB, VUB, x0, qps_opt);
0105 
0106 %% prepare output
0107 if nargout > 1
0108     lambdaout = [   lambda.mu_u - lambda.mu_l;
0109                     lambda.lower;
0110                     lambda.upper    ];
0111     if nargout > 3
0112         success = (howout == 1);
0113     end
0114 end

Generated on Mon 26-Jan-2015 14:56:45 by m2html © 2005