0001 function [results, success, raw] = mips6opf_solver(om, mpopt)
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072 [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
0073 VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
0074 [GEN_BUS, PG, QG, QMAX, QMIN, VG, MBASE, GEN_STATUS, PMAX, PMIN, ...
0075 MU_PMAX, MU_PMIN, MU_QMAX, MU_QMIN, PC1, PC2, QC1MIN, QC1MAX, ...
0076 QC2MIN, QC2MAX, RAMP_AGC, RAMP_10, RAMP_30, RAMP_Q, APF] = idx_gen;
0077 [F_BUS, T_BUS, BR_R, BR_X, BR_B, RATE_A, RATE_B, RATE_C, ...
0078 TAP, SHIFT, BR_STATUS, PF, QF, PT, QT, MU_SF, MU_ST, ...
0079 ANGMIN, ANGMAX, MU_ANGMIN, MU_ANGMAX] = idx_brch;
0080 [PW_LINEAR, POLYNOMIAL, MODEL, STARTUP, SHUTDOWN, NCOST, COST] = idx_cost;
0081
0082
0083 verbose = mpopt(31);
0084 feastol = mpopt(81);
0085 gradtol = mpopt(82);
0086 comptol = mpopt(83);
0087 costtol = mpopt(84);
0088 max_it = mpopt(85);
0089 max_red = mpopt(86);
0090 step_control = (mpopt(11) == 565);
0091 if feastol == 0
0092 feastol = mpopt(16);
0093 end
0094 opt = struct( 'feastol', feastol, ...
0095 'gradtol', gradtol, ...
0096 'comptol', comptol, ...
0097 'costtol', costtol, ...
0098 'max_it', max_it, ...
0099 'max_red', max_red, ...
0100 'step_control', step_control, ...
0101 'cost_mult', 1e-4, ...
0102 'verbose', verbose );
0103
0104
0105 mpc = get_mpc(om);
0106 [baseMVA, bus, gen, branch, gencost] = ...
0107 deal(mpc.baseMVA, mpc.bus, mpc.gen, mpc.branch, mpc.gencost);
0108 [vv, ll, nn] = get_idx(om);
0109
0110
0111 nb = size(bus, 1);
0112 nl = size(branch, 1);
0113 ny = getN(om, 'var', 'y');
0114
0115
0116 [A, l, u] = linear_constraints(om);
0117
0118
0119 [x0, xmin, xmax] = getv(om);
0120
0121
0122 [Ybus, Yf, Yt] = makeYbus(baseMVA, bus, branch);
0123
0124
0125 ll = xmin; uu = xmax;
0126 ll(xmin == -Inf) = -1e10;
0127 uu(xmax == Inf) = 1e10;
0128 x0 = (ll + uu) / 2;
0129 Varefs = bus(bus(:, BUS_TYPE) == REF, VA) * (pi/180);
0130 x0(vv.i1.Va:vv.iN.Va) = Varefs(1);
0131 if ny > 0
0132 ipwl = find(gencost(:, MODEL) == PW_LINEAR);
0133
0134
0135 c = gencost(sub2ind(size(gencost), ipwl, NCOST+2*gencost(ipwl, NCOST)));
0136 x0(vv.i1.y:vv.iN.y) = max(c) + 0.1 * abs(max(c));
0137
0138 end
0139
0140
0141 il = find(branch(:, RATE_A) ~= 0 & branch(:, RATE_A) < 1e10);
0142 nl2 = length(il);
0143
0144
0145 f_fcn = @opf_costfcn;
0146 gh_fcn = @opf_consfcn;
0147 ipm_hessian = @opf_hessfcn;
0148 [x, f, info, Output, Lambda] = ...
0149 mips6(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, ipm_hessian, opt, om, Ybus, Yf(il,:), Yt(il,:), mpopt, il);
0150 success = (info > 0);
0151
0152
0153 Va = x(vv.i1.Va:vv.iN.Va);
0154 Vm = x(vv.i1.Vm:vv.iN.Vm);
0155 Pg = x(vv.i1.Pg:vv.iN.Pg);
0156 Qg = x(vv.i1.Qg:vv.iN.Qg);
0157 V = Vm .* exp(1j*Va);
0158
0159
0160
0161 bus(:, VA) = Va * 180/pi;
0162 bus(:, VM) = Vm;
0163 gen(:, PG) = Pg * baseMVA;
0164 gen(:, QG) = Qg * baseMVA;
0165 gen(:, VG) = Vm(gen(:, GEN_BUS));
0166
0167
0168 Sf = V(branch(:, F_BUS)) .* conj(Yf * V);
0169 St = V(branch(:, T_BUS)) .* conj(Yt * V);
0170 branch(:, PF) = real(Sf) * baseMVA;
0171 branch(:, QF) = imag(Sf) * baseMVA;
0172 branch(:, PT) = real(St) * baseMVA;
0173 branch(:, QT) = imag(St) * baseMVA;
0174
0175
0176
0177 muSf = zeros(nl, 1);
0178 muSt = zeros(nl, 1);
0179 if ~isempty(il)
0180 muSf(il) = 2 * Lambda.ineqnonlin(1:nl2) .* branch(il, RATE_A) / baseMVA;
0181 muSt(il) = 2 * Lambda.ineqnonlin((1:nl2)+nl2) .* branch(il, RATE_A) / baseMVA;
0182 end
0183
0184
0185 bus(:, MU_VMAX) = Lambda.upper(vv.i1.Vm:vv.iN.Vm);
0186 bus(:, MU_VMIN) = Lambda.lower(vv.i1.Vm:vv.iN.Vm);
0187 gen(:, MU_PMAX) = Lambda.upper(vv.i1.Pg:vv.iN.Pg) / baseMVA;
0188 gen(:, MU_PMIN) = Lambda.lower(vv.i1.Pg:vv.iN.Pg) / baseMVA;
0189 gen(:, MU_QMAX) = Lambda.upper(vv.i1.Qg:vv.iN.Qg) / baseMVA;
0190 gen(:, MU_QMIN) = Lambda.lower(vv.i1.Qg:vv.iN.Qg) / baseMVA;
0191 bus(:, LAM_P) = Lambda.eqnonlin(nn.i1.Pmis:nn.iN.Pmis) / baseMVA;
0192 bus(:, LAM_Q) = Lambda.eqnonlin(nn.i1.Qmis:nn.iN.Qmis) / baseMVA;
0193 branch(:, MU_SF) = muSf / baseMVA;
0194 branch(:, MU_ST) = muSt / baseMVA;
0195
0196
0197 nlnN = getN(om, 'nln');
0198
0199
0200 kl = find(Lambda.eqnonlin < 0);
0201 ku = find(Lambda.eqnonlin > 0);
0202 nl_mu_l = zeros(nlnN, 1);
0203 nl_mu_u = [zeros(2*nb, 1); muSf; muSt];
0204 nl_mu_l(kl) = -Lambda.eqnonlin(kl);
0205 nl_mu_u(ku) = Lambda.eqnonlin(ku);
0206
0207 mu = struct( ...
0208 'var', struct('l', Lambda.lower, 'u', Lambda.upper), ...
0209 'nln', struct('l', nl_mu_l, 'u', nl_mu_u), ...
0210 'lin', struct('l', Lambda.mu_l, 'u', Lambda.mu_u) );
0211
0212 results = mpc;
0213 [results.bus, results.branch, results.gen, ...
0214 results.om, results.x, results.mu, results.f] = ...
0215 deal(bus, branch, gen, om, x, mu, f);
0216
0217 pimul = [ ...
0218 results.mu.nln.l - results.mu.nln.u;
0219 results.mu.lin.l - results.mu.lin.u;
0220 -ones(ny>0, 1);
0221 results.mu.var.l - results.mu.var.u;
0222 ];
0223 raw = struct('xr', x, 'pimul', pimul, 'info', info, 'output', Output);