Home > matpower4.0 > fdpf.m

fdpf

PURPOSE ^

FDPF Solves the power flow using a fast decoupled method.

SYNOPSIS ^

function [V, converged, i] = fdpf(Ybus, Sbus, V0, Bp, Bpp, ref, pv, pq, mpopt)

DESCRIPTION ^

FDPF  Solves the power flow using a fast decoupled method.
   [V, CONVERGED, I] = FDPF(YBUS, SBUS, V0, BP, BPP, REF, PV, PQ, MPOPT)
   solves for bus voltages given the full system admittance matrix (for
   all buses), the complex bus power injection vector (for all buses),
   the initial vector of complex bus voltages, the FDPF matrices B prime
   and B double prime, and column vectors with the lists of bus indices
   for the swing bus, PV buses, and PQ buses, respectively. The bus voltage
   vector contains the set point for generator (including ref bus)
   buses, and the reference angle of the swing bus, as well as an initial
   guess for remaining magnitudes and angles. MPOPT is a MATPOWER options
   vector which can be used to set the termination tolerance, maximum
   number of iterations, and output options (see MPOPTION for details).
   Uses default options if this parameter is not given. Returns the
   final complex voltages, a flag which indicates whether it converged
   or not, and the number of iterations performed.

   See also RUNPF.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [V, converged, i] = fdpf(Ybus, Sbus, V0, Bp, Bpp, ref, pv, pq, mpopt)
0002 %FDPF  Solves the power flow using a fast decoupled method.
0003 %   [V, CONVERGED, I] = FDPF(YBUS, SBUS, V0, BP, BPP, REF, PV, PQ, MPOPT)
0004 %   solves for bus voltages given the full system admittance matrix (for
0005 %   all buses), the complex bus power injection vector (for all buses),
0006 %   the initial vector of complex bus voltages, the FDPF matrices B prime
0007 %   and B double prime, and column vectors with the lists of bus indices
0008 %   for the swing bus, PV buses, and PQ buses, respectively. The bus voltage
0009 %   vector contains the set point for generator (including ref bus)
0010 %   buses, and the reference angle of the swing bus, as well as an initial
0011 %   guess for remaining magnitudes and angles. MPOPT is a MATPOWER options
0012 %   vector which can be used to set the termination tolerance, maximum
0013 %   number of iterations, and output options (see MPOPTION for details).
0014 %   Uses default options if this parameter is not given. Returns the
0015 %   final complex voltages, a flag which indicates whether it converged
0016 %   or not, and the number of iterations performed.
0017 %
0018 %   See also RUNPF.
0019 
0020 %   MATPOWER
0021 %   $Id: fdpf.m,v 1.13 2010/04/26 19:45:25 ray Exp $
0022 %   by Ray Zimmerman, PSERC Cornell
0023 %   Copyright (c) 1996-2010 by Power System Engineering Research Center (PSERC)
0024 %
0025 %   This file is part of MATPOWER.
0026 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0027 %
0028 %   MATPOWER is free software: you can redistribute it and/or modify
0029 %   it under the terms of the GNU General Public License as published
0030 %   by the Free Software Foundation, either version 3 of the License,
0031 %   or (at your option) any later version.
0032 %
0033 %   MATPOWER is distributed in the hope that it will be useful,
0034 %   but WITHOUT ANY WARRANTY; without even the implied warranty of
0035 %   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
0036 %   GNU General Public License for more details.
0037 %
0038 %   You should have received a copy of the GNU General Public License
0039 %   along with MATPOWER. If not, see <http://www.gnu.org/licenses/>.
0040 %
0041 %   Additional permission under GNU GPL version 3 section 7
0042 %
0043 %   If you modify MATPOWER, or any covered work, to interface with
0044 %   other modules (such as MATLAB code and MEX-files) available in a
0045 %   MATLAB(R) or comparable environment containing parts covered
0046 %   under other licensing terms, the licensors of MATPOWER grant
0047 %   you additional permission to convey the resulting work.
0048 
0049 %% default arguments
0050 if nargin < 7
0051     mpopt = mpoption;
0052 end
0053 
0054 %% options
0055 tol     = mpopt(2);
0056 max_it  = mpopt(4);
0057 verbose = mpopt(31);
0058 
0059 %% initialize
0060 converged = 0;
0061 i = 0;
0062 V = V0;
0063 Va = angle(V);
0064 Vm = abs(V);
0065 
0066 %% set up indexing for updating V
0067 npv = length(pv);
0068 npq = length(pq);
0069 
0070 %% evaluate initial mismatch
0071 mis = (V .* conj(Ybus * V) - Sbus) ./ Vm;
0072 P = real(mis([pv; pq]));
0073 Q = imag(mis(pq));
0074 
0075 %% check tolerance
0076 normP = norm(P, inf);
0077 normQ = norm(Q, inf);
0078 if verbose > 0
0079     alg = mpopt(1);
0080     if mpopt(1) == 2, s = 'XB'; else, s = 'BX'; end
0081     fprintf('(fast-decoupled, %s)\n', s);
0082 end
0083 if verbose > 1
0084     fprintf('\niteration     max mismatch (p.u.)  ');
0085     fprintf('\ntype   #        P            Q     ');
0086     fprintf('\n---- ----  -----------  -----------');
0087     fprintf('\n  -  %3d   %10.3e   %10.3e', i, normP, normQ);
0088 end
0089 if normP < tol && normQ < tol
0090     converged = 1;
0091     if verbose > 1
0092         fprintf('\nConverged!\n');
0093     end
0094 end
0095 
0096 %% reduce B matrices
0097 Bp = Bp([pv; pq], [pv; pq]);
0098 Bpp = Bpp(pq, pq);
0099 
0100 %% factor B matrices
0101 [Lp, Up, Pp] = lu(Bp);
0102 [Lpp, Upp, Ppp] = lu(Bpp);
0103 
0104 %% do P and Q iterations
0105 while (~converged && i < max_it)
0106     %% update iteration counter
0107     i = i + 1;
0108 
0109     %%-----  do P iteration, update Va  -----
0110     dVa = -( Up \  (Lp \ (Pp * P)));
0111 
0112     %% update voltage
0113     Va([pv; pq]) = Va([pv; pq]) + dVa;
0114     V = Vm .* exp(1j * Va);
0115 
0116     %% evalute mismatch
0117     mis = (V .* conj(Ybus * V) - Sbus) ./ Vm;
0118     P = real(mis([pv; pq]));
0119     Q = imag(mis(pq));
0120     
0121     %% check tolerance
0122     normP = norm(P, inf);
0123     normQ = norm(Q, inf);
0124     if verbose > 1
0125         fprintf('\n  P  %3d   %10.3e   %10.3e', i, normP, normQ);
0126     end
0127     if normP < tol && normQ < tol
0128         converged = 1;
0129         if verbose
0130             fprintf('\nFast-decoupled power flow converged in %d P-iterations and %d Q-iterations.\n', i, i-1);
0131         end
0132         break;
0133     end
0134 
0135     %%-----  do Q iteration, update Vm  -----
0136     dVm = -( Upp \ (Lpp \ (Ppp * Q)) );
0137 
0138     %% update voltage
0139     Vm(pq) = Vm(pq) + dVm;
0140     V = Vm .* exp(1j * Va);
0141 
0142     %% evalute mismatch
0143     mis = (V .* conj(Ybus * V) - Sbus) ./ Vm;
0144     P = real(mis([pv; pq]));
0145     Q = imag(mis(pq));
0146     
0147     %% check tolerance
0148     normP = norm(P, inf);
0149     normQ = norm(Q, inf);
0150     if verbose > 1
0151         fprintf('\n  Q  %3d   %10.3e   %10.3e', i, normP, normQ);
0152     end
0153     if normP < tol && normQ < tol
0154         converged = 1;
0155         if verbose
0156             fprintf('\nFast-decoupled power flow converged in %d P-iterations and %d Q-iterations.\n', i, i);
0157         end
0158         break;
0159     end
0160 end
0161 
0162 if verbose
0163     if ~converged
0164         fprintf('\nFast-decoupled power flow did not converge in %d iterations.\n', i);
0165     end
0166 end

Generated on Mon 26-Jan-2015 14:56:45 by m2html © 2005