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1 NOTATION

1 Notation

Styles

x, 0 real scalars

x, 0 complex scalars
x,0 real vectors

X, 0 complex vectors
X, 0 real matrices

X, 0 complex matrices

r,x,x,x, X, X variables, functions

z,x, 2, X, X,X constants, parameters’

T, X, X , X selected rows of interest of ¢, x, X, X, respectively?

Operators

a] diagonal matrix with vector a on the diagonal

AT (non-conjugate) transpose of matrix A

a*, a*, A* complex conjugate of a, a, and A, respectively

R{a}, S{a} real and imaginary parts of a, respectively

a" element-wise exponent® for vector a

A" matrix exponent?® for matrix A

ab, a® element-wise exponent? for vector b and matrix B, respectively
f(x), f(x) scalar, vector functions of @, respectively

fr, fo transpose of gradient of f, Jacobian of f, respectively, w.r.t. @
foa, T (N) Hessian of f, Jacobian of £, A, respectively, w.r.t.

!Constants and parameters are underlined, with the following exceptions: constants e and j, p,
q, m and n when used as dimensions, and ¢, j, and k as indices.

20Obtained by multiplying by matrix J (see Section 2.2).

3Superscripts may also be used as indices, indicated by context.



1 NOTATION

Constants and Dimensions

e,J

k
Ny N, npa n

p
nx7 nv7 nz

Lo, [1,]
0

Variables
Vi
Ui, Wy

Vi, 0;

Zr, %4

constants, e is base of natural log (= 2.71828), j is /—1

number of elements, nodes, ports, ports for element k, respectively
dimension of vector x, v, z, respectively.

n x 1 vector of all ones, n X n identity matrix

appropriately-sized vector or matrix of all zeros

complex voltage at node/port i

real and imaginary parts of voltage at node/port i, v; = u; + jw;
voltage magnitude and angle at node/port i, v; = v;e/%

column vector of complex voltages v;

column vector v with elements scaled to unit magnitude, e = e/¢

column vectors of real (u;) and imaginary (w;) parts of voltage,
respectively, v =u + jw

column vectors of voltage magnitudes v; and angles 6;, respectively,
v =[v]e=[v]e?

column vector of inverse of complex voltages v%-v A=v!

column vector of real non-voltage state variables z;

column vector of complex non-voltage state variables z;

column vectors of real and imaginary parts of z = z, + j2;



1 NOTATION

Parameters

I matrix formed by taking selected rows, indexed by vector k, from
an identity matrix*

Y AC model admittance matrix

L linear coefficient (of z) for affine complex current injections

i vector of constant complex current injections

M linear coefficient (of v) for affine complex power injections

N linear coefficient (of z) for affine complex power injections

s vector of constant complex power injections

B DC model susceptance matrix

K linear coefficient (of z) for affine active power injections

P vector of constant active power injections

C element-node incidence matrix for a given port

D element-variable incidence matrix for a given state variable

A combined incidence matrix A = [ % g }

40Often used simply as J without the subscript.



2 INTRODUCTION

2 Introduction

This document describes the generalized model architecture for MATPOWER [|—3]
and shows the network balance and other constraints expressed in terms of complex
matrices and how their first and second derivatives can be computed efficiently using
complex sparse matrix manipulations. This note includes much that is based on
the work documented previously in MATPOWER Technical Note 2 [1], MATPOWER
Technical Note 3 [5] and MATPOWER Technical Note 4 [6].

We will be looking at complex functions of the real valued n x 1 vector x. For the
purposes of illustrating the notation, assume also that a is partitioned into subvectors
y and z,

(A
T
o= | | =] Y] =" 1)
Ty,
| %q

where y is p X 1 and z is ¢ X 1, hence n = p +q.
For a complex scalar function f: R™ — C of a, we use the following notation for
the 1 X n row vector of first derivatives (transpose of the gradient)

of of  of of
~ [ £ (2.3)
Using the following notation for the second partial derivatives of f,
9%t . 0%
92f o [ of T Oy1021 dy10z4
fye = 5 - = —(—) = S , (2.4)
20y 0z \Jy S
OypOz1 OypOzq
the n x n Hessian of f is
of L ot
an a af T al‘l axlaxn
* TACE ot .. 2
Oxn 01 ox?
_ | fyy fye
_ [ w } | (2.6)


https://matpower.org/docs/TN2-OPF-Derivatives.pdf
https://matpower.org/docs/TN3-More-OPF-Derivatives.pdf
https://matpower.org/docs/TN3-More-OPF-Derivatives.pdf
https://matpower.org/docs/TN4-OPF-Derivatives-Cartesian.pdf

2 INTRODUCTION

For a complex vector function f: R® — C™ of a vector «, where
f@) = [ f'(z) f(z) - ()], (2.7)

the first derivatives form the m x n Jacobian matrix, where row i is the transpose of
the gradient of f°.

oft .. off
af o0z OTn
oz Oxn

In the derivations in this document, the full 3-dimensional set of second partial
derivatives of f, consisting of the Hessians of each element of f, will not be computed.
Instead a weighted sum of these Hessians will be formed by computing the Jacobian
of the vector function obtained by multiplying the transpose of the Jacobian of f by
a constant real vector A. The following notation will be used to denote this n x n
matrix.

frp(a) = <a% (fmTA)) = ka; o fr (2.9)
[ )-SR k] ew

where
f,.(a) = (8% (fyTA)> = éakfzz. (2.11)

Alternatively, a different matrix of partial derivatives can be formed by comput-
ing the Jacobian of the vector function obtained by multiplying the untransposed
Jacobian of f by a constant real vector A. For this m x n matrix, the following
notation is used.

a'fl
8 X
foz(a) = (a_ (m)) = : (2.12)
T A= T
a {7
o, ') +o T, oy, T+ oL TEL
= : (2.13)
o, I + o 1 o, i + o TE

= [ fyley) + Eegla) fzlen) +fxle) ], (219)

10



2 INTRODUCTION

where A and a are partitioned into Ay, A, and ay;, o, respectively, and

[, Tl
a Yy ‘ Yyz
fyz(oy) = 72 (fyAy) = : ) (2.15)

Ay=a Tem

y y ay fyz |
3 asz;y
Az:az o Tfm

| 7 Tzy

The second derivatives in this alternative form are not yet derived in this docu-
ment but would be useful, for example, for efficiently computing the optimal multi-
plier for Newton step-sizes in a Newton power flow.

11



2.1 Linear Transformations of f and x 2 INTRODUCTION

2.1 Linear Transformations of f and =

Suppose we have a function g that is a linear transformation of f by a matrix A,

g(x) = Af(x), (2.17)

and a variable z is obtained via a linear transformation of the variable x by the
matrix B.

z=Bx (2.18)

Then let h be a new function that combines these two linear transformations.

h(z) =g(z) = g(B ) (2.19)
= Af(z) = Af(Bx) (2.20)
Then the derivatives of h can be expressed in terms of the derivatives of f as follows.
oh of 0z
= Af.B (2.22)
hyo () = 9 (hy"A) (2.23)
T aw €T o .
(0 T\ 0z
= <a_z (hz'A) 8_:1:) o (2.24)
= <3 (BT£,TATA) B) (2.25)
8 A=
_ (72 (£."u)B (2.26)
0z V% J—ATa '
=B'f..(ATa)B (2.27)

To summarize, for a function f(x), whose derivatives f,, and f,,(a) we know, and
a function h, defined in terms of f as

h(x) = Af(Bx), (2.28)

the derivatives of h are given by
h, = Af,B (2.29)
hye(a) = B'f,.(ATa)B. (2.30)

12



2.2 Selected Elements of a Function 2 INTRODUCTION

2.2 Selected Elements of a Function

Consider the case when only a subset of the elements of a vector function f is of
interest. Rather than calculating all terms, then selecting the subset of elements of
interest, we want to maximize computational efficiency by avoiding the calculation
of unused terms.

To this end, we want to express all functions and derivatives in a form that
facilitates the use of only the required elements.

Suppose, we are interested a subset of m elements of the n x 1 vector function f,
namely the elements indexed by the m x 1 vector k, or f{zy, where each element of
k is unique. If we define the m x n matrix J, as the m rows, indexed by k, of an
n X n identity matrix, then we can define the subset f of f as follows.

fr,
fy.

2

f=J,f="fy = (2.31)

f.

m

A similar notation is used to denote selecting a subset of the rows of a matrix A
corresponding to a vector k of row indices.

A=J.A (2.32)

For simplicity of notation, the k subscript for J will typically be omitted, with J
generically denoting the matrix used to select the desired rows of a post-multiplied
matrix or vector.

It follows from the definition of J that

JJT = [1,,] (2.33)

and J'J is an n x n identity matrix with diagonal terms zeroed out for rows not
included in k. Some other useful relationships, using vector g and matrix A, follow.

8] = [Jg] = J[g] LT (2.34)
&) J = J [g] (2.35)
J'[g] =[g] I’ (2.36)

J (g A =[g] A 2.37)
ATlgl " =A[g (2.38)



2.3 Chain Rule Trick 2 INTRODUCTION

2.3 Chain Rule Trick

One common operation encountered in these derivations is the element-wise multi-
plication of a vector a by a vector b to form a new vector c of the same dimension,
which can be expressed in either of the following forms

c=[a]b=[b]a (2.39)

It is useful to note that the derivative of such a vector can be calculated by the chain
rule as

LN g—z 1) 22 fa] b, + [b]a, (2:40)

¢ = G i

2.4 Composition of x

The unified element model described here will always have a vector of state variables
consisting of the voltages at each terminal as well as optional additional non-voltage
state variables.

2.4.1 AC Model

The AC model is defined in terms of a complex state vector x, consisting of complex
voltages v and complex non-voltage state variables z.

A%
X = { . } (2.41)
The complex vectors x, v and z are actually functions of the corresponding real
vectors , v, and z consisting of the real components of the complex values. For
the purposes of this document, two options will be considered, one with voltages
v expressed in polar coordinates and the other in cartesian coordinates, with the
non-voltage state z using cartesian coordinates in both cases.

14



2.4 Composition of x 2 INTRODUCTION

Real Vectors

Polar Cartesian
N ] v | ¥ ] (2.42)
v w
z=| 2 ] z=|~ ] (2.43)
zZ; Zj
0 Uu
=[2]-| % =[2]-12] ew
|z Z, |z Z,
zZ; Z
Complex Vectors
Polar Cartesian
v(v) = vel® v(v) =u+ jw (2.45)
z(z) =z, + jz; z(z) =z, + jz; (2.46)

-] w-[m]  es

For a given function of the complex vector x, for example g(x), we will use g(x)
as shorthand notation to refer to the equivalent function of the corresponding real
x, that is, to refer to g(x(x)). While the AC model itself is expressed directly in
terms of the complex state vector x (e.g. g(x)), with its components v and z, the
derivatives are based on the real valued state vector & and its 4 real components

from (2.44) (e.g. gz and gza(A)).

2.4.2 DC Model

The DC model is defined in terms of a real state vector & consisting of the voltage
angles @ and non-voltage state variables z.

z— { 0 ] (2.48)

z

15



3 INDIVIDUAL ELEMENT

3 Individual Element

For a given model and formulation, a generic element with n, ports is defined by (1)
a vector of state variables, which may vary depending on the model and formulation,
and (2) functions of that state representing the injections at each port. The first
part of the state always represents the voltage at each port, e.g. complex voltages
for the AC model and voltage angles for the DC model.

3.1 AC Model

For the AC model, shown in Figure 1, the state vector x begins with the n, x 1
vector v of complex voltages at the n, ports, and may include an n, x 1 real vector
of additional state variables z, for a total of ny state variables.

x = [V} (3.1)

VA

The port injection functions for the model, both complex power injection g°(x)
and complex current injection g’(x), are defined by three terms, a linear current

ilin lin(x), and an ar-

injection component i"*(x), a linear power injection component s

bitrary nonlinear component, s"/"(x) or i""(x), respectively.

f N\
voltage
state
— V| A
L element state 10

g1(x) o

B Y- fv ]
/X =
\ Z
ﬁ Vnp,) Z,IZO

Snyp (x) port injection functions
g' (%)
g” (x)

Figure 1: AC Model for Element with n, Ports

16



3.1 AC Model 3 INDIVIDUAL ELEMENT

The linear current and power injection components are expressed in terms of the

coefficient matrlx M are np X np, hnear coefficient matrices L and N are n, X n,,
and i and s are n, x 1 vectors of constant current and power injections.

i(x) = [ Y L]x+i (3.2)
=Yv+Lz+i

s"(x)=[M N |x+s :
=Mv+Nz+s (3.5)

Note that the arbitrary nonlinear injection component, represented by either

s™™ or i"" corresponds to a single set of injections represented either as a complex

power injection or as a complex current injection, but not both. Since the functions
represent the same set of injections, they are not additive components, but rather
must be related to one another by the following relationship.

s""(x) = [v] (i"l"(x)yk (3.6)

3.1.1 Complex Power Injections

To facilitate the derivations of the derivatives of each term, we define s’(x) to be the
power injection corresponding to the linear current term.

s'(x) = [v] (i (x))" (3.7)

Then the port injection function for complex power and its derivatives can be
written as follows,

g% (x) = s'(x) +5™(x) +5""(x)

V] (i"(x))" + 8" (%) + 8" (x) :
V] (Yv +Lz+i)" + Mv + Nz + s+ s""(x) (3.10)

gf; = si + SZ” + SZZ" (3.11)
8op(A) = 5o (X) + SLE(A) + s (A) (3.12)

where the derivatives of s/

the derivatives of s™™

and s! are derived in Sections 7 and 8, respectively, and
are assumed to be provided explicitly.

17



3.1 AC Model 3 INDIVIDUAL ELEMENT

3.1.2 Complex Current Injections

Similarly, we define i°(x) to be the current injection corresponding to the linear
power term.

i°(x) = [s""(x)] A (3.13)

where A is shorthand for v—.
Then the port injection function for complex current and its derivatives can be

written as follows,

g/ (x) = " (x) + i%(x) + 1" (x) (3.14)
=i"(x) + [s"(x)] A4 i (x) (3.15)
=Yv+Lz+i+ [Mv+Nz+s]"A* +i""(x) (3.16)

gl =il 445 4 o (3.17)
ra(A) = ign(A) +i5,(N) + g (N) (3.18)

where the derivatives of i and i® are derived in Sections 6 and 9, respectively, and
the derivatives of i"™ are assumed to be provided explicitly.

18



3.2 DC Model 3 INDIVIDUAL ELEMENT

3.2 DC Model

For the DC model, the state vector x is real and begins with the n, x 1 vector 8 of
voltage angles at the n, ports, and may include an n, x 1 real vector of additional
state variables z, for a total of n, state variables.

z— [ 9} (3.19)

z

The port injection function in this case defines the active power port injections
as a linear function of a set of parameters B, K and p, where B is an n, X n,
susceptance matrix, K is an n, X n, matrix coefficient for a linear power injection
function, and p is an n, X 1 constant power injection.

3.2.1 Active Power Injections

g"(x)=[B K |z+p 3.20
~BO+Kz+p 3.21)
g.=| B K| (3.22)

19



4 AGGREGATING ELEMENTS

4 Aggregating Elements

4.1 Aggregation by Element Class

Given a set or class® of ny elements with a uniform number of ports (n,) and state
variables (ny), it is often convenient to aggregate the models together, with all of
their variables, parameters and functions, and treat the set as a single large element
with ny x n, ports and n; X ny state variables.

4.1.1 Forming the Aggregate Model

Parameters Y and s from the AC model will be used to demonstrate how the aggre-
gation is done, but the process is the same for all variables, parameters and functions.
That is, matrices L, M, N, B, and K are handled just like Y, and vector variables
v, z, 0, parameters i, p, and functions i"”", and s™" are handled just like vector
parameter s. B

Indexing the parameters and functions for a single element k, as Y*, L*, i*, MF,
NF, gk juink gnink BF KF* and p* we first take each scalar entry (i.e. from each

row ¢ and column j) of each parameter,

k k i
1 Yin, 51
Yi=1 o] st =1 |, (4.1)
k k k
gnpl Znpnp S”p

and define a corresponding “stacked” matrix or vector version of the entry drawn
from all n; network elements. Individual matrix entries are stacked with k going
from 1 to n; along the diagonal to form a corresponding diagonal matrix. Similarly,
individual vector entries are stacked vertically to form a corresponding column vector,
as follows.

v, s}
Y, = . ) §; = : (4.2)
ynk Snk

Zig =3

5E.g. Each of the following could be considered its own separate class of elements: AC trans-
mission lines, two-winding transformers, three-winding transformers, generators, non-dispatchable
ZIP loads, shunts, DC transmission lines, etc.

20



4.1 Aggregation by Element Class 4 AGGREGATING ELEMENTS

The full set of parameters for the aggregate element can then be assembled from
these “stacked” parameters as

Y, -- me Sy

Y

. S
—npl —MNpnp =np

1)}
I

(4.3)

Assembling aggregate versions of all of the parameters and functions in this way yields
a model of the aggregate (n; x n,)-port device whose port injections are expressed
by (3.10) and (3.16) for AC formulations, or (3.21) for the DC formulation.

4.1.2 Inputs for the Aggregate Model

For a given class ¢ of nj—port elements to be aggregated as described above, let
us denote the corresponding aggregate variables, parameters and functions with the
superscript c.

Given that each port of the aggregate element c¢ is connected to one of the n,
network nodes, and using the AC model for illustration, the appropriate port voltage
vector v¢ for this connected aggregate model is constructed from the corresponding
node voltages v using a set of n; element-node incidence matrices C7, where j is the
index for the port number, ranging from 1 to nj. That is, the dimension of C7 is
n, X ng, and its (i, k) element is 1 if port j of element k is connected to node i, and
0 otherwise.

Stacking these per-port incidence matrices horizontally to form

co-|c oy (44)
yields
ve=C"v (4.5)
vi ci’
: = : V. (4.6)
Ve c:”

where v{ is the ng x 1 vector of port j voltages for all nj elements.

If each individual element in class ¢ has n¢ non-voltage state variables (z vari-
ables), indexed by j, a similar incidence matrix D7 can be used to select from the full
system z the subset of state variables corresponding to variable j for the aggregate
element for all of class c. That is, the dimension of Dj is n, x ng, and its (i, k)

21



4.2 Full Network Model 4 AGGREGATING ELEMENTS

element is 1 if the j-th non-voltage state variable of element k corresponds to z; (i-th
element of system z), and 0 otherwise.
D° is similarly formed by stacking the individual D} matrices horizontally

D°=[Di - D ] (4.7)
yielding
z¢ (4.8)
Zi DCT
: z (4.9)
Zp, Q;J

Combining C° and D¢ into A°, by putting them on the block diagonal, and
stacking v (or ) and z into x, as in (3.1) results in the following.

c __ v _ QCT O \4 _ cT
RS R
Similarly, for the DC model we have the following based on (3.19).
. 0(: B QCT 0 9 B oT
(2[5 e

4.2 Full Network Model

With each class of elements aggregated into its own class-specific aggregate model
of an element with nj X n; ports and nf X ng state variables, these models can also
be further aggregated into one large model encompassing the entire system. The
matrices for each class are stacked to form block diagonal matrices and the vectors
are simply stacked vertically. So, using superscript s to denote variables, parameters
and functions for the full system, for a network with n, different classes of elements,
we have

Y= , I (4.12)
ch ghe

|

and similarly for the other matrix and vector variables, parameters and functions.

22



4.3 AC Model 4 AGGREGATING ELEMENTS

Stacking the C° and D¢ incidence matrices horizontally as well, results in corre-
sponding incidence matrices for the full system model.

QS:[Ql an] DS:[Dl an} A’ =

[ ¢ QOS } (4.13)

This gives us the state variables for the full network model. Here v*® represents
the port voltages for all network elements, expressed in terms of the network node
voltages v.

vi=C"v (4.14)

z° =Dz (4.15)

x* = A%Tx (4.16)
Similarly for the DC model.

0°=C°"0 (4.17)

2*=D"z2 (4.18)

' =A"x (4.19)

Note: In general, the element classes and the full vector z of all non-voltage state
variables can always be ordered such that D?® is an identity matrix, that is, z° = z.

The aggregate models, whether for a single class of elements or for the entire
network, then take the following form, where we drop the ¢ or s superscripts for
simplicity and use the x, v, and z variables based on the network node voltages (as
opposed to port voltages) and full system state variables.

4.3 AC Model
4.3.1 Complex vs. Real State Vectors

As described in Section 2.4.1, the complex vector x is defined as a function of a
corresponding real vector @, as in (2.44) and (2.47). Likewise, complex v is a function
of real v (i.e. of @ and v, or of w and w), and complex z is a function of real z (i.e.
of z, and z;).

Given incidence matrices C, D and A used to select the appropriate elements
of the complex vectors v, z, and x, respectively, it is straightforward to construct
equivalent incidence matrices C’', D', and A’ for the corresponding real vectors v, z,
and . Because C and D each have a single non-zero entry in each column, it turns

23



4.3 AC Model 4 AGGREGATING ELEMENTS

out that they can be duplicated on the block diagonal of C’ and D’, respectively,
with A’ constructed from C’ and D’ as expected.

c-[§e] o[B8 a-58] w

Applying the new primed matrices to the real vectors is equivalent to applying
the original matrices to the complex vectors. In other words,

(C"v) (4.21)

C'v(v)=v v
D"z(z) = z(D"" 2) (4.22)
ATx(x) =x(Az). (4.23)

This means that, for a given function g(x) and its corresponding g(x), transforming
the complex input x by AT is equivalent to transforming the real input x by A’T.

That is, g(A'x) is equivalent to g(A" ).
4.3.2 Complex Power Injections

The complex power port injections from (3.8)—(3.10) are expressed for the aggregate
model in terms of the system state variables as follows.

g7 (x) = g"(A'x) (4.24)
=s'(ATx) +s"(ATx) + s""(ATx) (4.25)
= [CTV] (AT + 5 (ATX) + 57 (x) (4.26)
= [QTv] (ETV +LD"z + 1)* +MC'v+ND"z+5s+s"(ATx)
(4.27)

The derivatives of this complex power port injection function can be expressed
based on (3.11)—(3.12) as follows,
Sys T

8o =g, A (4.28)

= (sl +slin 4 s7i) AT (4.29)

g2 (N) = A'gl, (VA" (4.30)

= A’ (s52(A) +sia(A) + i (N) AT (4.31)

where the derivatives of s and s’ are derived in Sections 7 and 8, respectively, and
the derivatives of s"™™ are assumed to be provided explicitly.
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4.4 DC Model 4 AGGREGATING ELEMENTS

4.3.3 Complex Current Injections

Likewise, the complex current port injections from (3.14)—(3.16) are expressed for
the aggregate model in terms of the system state variables as follows.

g"(x) = g'(Ax) (4.32)
=i"(ATx) +i%(ATx) +i""(ATx) (4.33)
— ili”(ATx) + [Slm(ATX)} *QTA* + inln(ATX) ( )
=YC'™v+LD"z+i+ [MC'v+ND"z+5s]"CTA* +i""(ATx) (4.35)

The derivatives of this complex current port injection function can be expressed
based on (3.17)—(3.18) as follows,

ghovs — ol AT (4.36)

= (il 15 + in) AT (4.37)

gl (A) = Algl, (VAT (4.38)
= A’ (i) +15,(A) +ir(a) AT (4.39)

1:13213 T _—

where the derivatives of i and i” are derived in Sections 6 and 9, respectively, and
snln

the derivatives of i are assumed to be provided explicitly.

4.4 DC Model

4.4.1 Active Power Injections

The active power port injections from (3.20)—(3.21) are expressed for the aggregate
model in terms of the system state variables as follows.

9" (x) = g"(A') (4.40)
—BC'"0+KD'z+p (4.41)

The derivatives of this active power port injection function can be expressed based
on (3.22) as follows.

ghys — gl AT (4.42)
=[BC" KD' |
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5 COMPLEX VOLTAGES AND DERIVATIVES

5 Complex Voltages and Derivatives

Each complex voltage v; can be expressed in polar form as v; = 1;e/% or in cartesian
form as v; = u; + jw;. A vector of such voltages (node voltages, port voltages, etc.)
is denoted v, where the real vectors v and @ are the voltage magnitudes and angles,
and u and w are the real and imaginary parts of v, respectively.

Consider also the vector of inverses of bus voltages \%" denoted by A. Note that

*

S = = 5.1
vi  ou+jw; w4 w?o v? (5.1)
A=vli=[]v (5.2)
0 = tan* ([u]_l w) (5.3)
v=(u+ wQ)% (5.4)

We will also define e as ‘
e=[v] 'v=2e? (5.5)

which means that

v = [v]e. (5.6)

Any of the variables v, A, v, 8, u, w, and e can be multiplied by the matrix J
as described in Section 2.2 to select only the elements of interest, yielding v, A, o,
0, u, w, and e, respectively.

5.1 Complex

5.1.1 First Derivatives

é, =0 (5.7)
. OA 2 212
v=oo =T I=-[AJ (5.8)
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5.2 Polar Coordinates 5 COMPLEX VOLTAGES AND DERIVATIVES

5.2 Polar Coordinates

5.2.1 First Derivatives

vo= % = j[¥]d (5.9)
V= O (o) 9 = (6] (5.10)
Ap = % =~ Ve =—j V] I = —j[A]J (5.11)
A, = g—f — [ =[P T L= -] A (5.12)
eo = 00 = jle]J (513)
&, = g—i =0 (5.14)

5.2.2 Second Derivatives

It may be useful in later derivations to note that

. a o [0v' Ty A
Viw(A) = o> (a_u A) =J [AJe, =0 (5.15)
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5.3 Cartesian Coordinates 5 COMPLEX VOLTAGES AND DERIVATIVES

5.3 Cartesian Coordinates

5.3.1 First Derivatives

V= g—z —J (5.16)
Vo = g—i =jd (5.17)
Ay = % = —[APJ (5.18)
Ay = g—fv = —j[A*J (5.19)
0= 20 il (5.20)
0= 20 o1l (5.21)
pu= 00 = 5] fa) S (5.22)
Do = 00 = (o] i) S (5.23)
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5.3 Cartesian Coordinates 5 COMPLEX VOLTAGES AND DERIVATIVES

5.3.2 Second Derivatives

Duu(A) = a% (éuTA) (5.24)
= 2J 7 (A [p) " [a] [w] J (5.25)
euw ()‘) a% (éuT)‘ (5 26)
= T[NP ([]” - [a]") J (5.27)
Bupu(N) = % (@)wTA (5.28)
= JTN [P ([w)? - [a)®) I (5.29)

0 [, T
Buw(N) = 5 (0" A) (5:30)
= —2J " (A|[p] " [a] [w)] J (5.31)
Dun(X) = a% (ﬁuT A (5.32)
=JT A\ [P [w]*J (5.33)
I/uw(>\> - 0% <’>uTA) (534)
= —J N[ (@] [w] J (5.35)
I/wu(A) - % <’>wT5‘> (536)
= —J A [P (@) [w] J (5.37)
Do (A) % (7a"3) (5.38)
= JTA [P [a)? g (5.39)



6 LINEAR CURRENT INJECTIONS

6 Linear Current Injections

The linear current injection term i from (3.3), namely,

i""(x) = Yv+Lz+1i,

has the following derivatives.

6.1 Complex

6.1.1 First Derivatives

<lin
flin _ O™ [ gitm  piin
X ox ov 0z
. ailzn R
slin __ -Y
vioooov o T
R ailzn R
slin __ - L
“ oz =
6.2 Polar
6.2.1 First Derivatives
o ailzn . o . o
lin _ _ ailzn 8ilzn 8ilzn ailzn
X ox 00 ov 0zy 0z;
o Pl .
slin __ __slin _
0 — 00 =1, Vg = .]X [V]
o ailzn . R
slin __ _ slin _
= = = Y [e]
lin
“lin Oi slin _ ]Z
zZr =1, Z; = L
0z,
) 8il'm o R
lin lin
S =i,"z,, = jL
Z;i azi Z z
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(6.2)
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6.2 Polar 6 LINEAR CURRENT INJECTIONS

6.2.2 Second Derivatives

slin

Since i," is constant, all second derivatives involving z, and z; are zero. Similarly,

slin

i,’"(\) is zero and the other three are diagonal matrices.

vv

31

o o o O
el e B e B e

(6.10)

(6.11)

(6.12)

(6.13)
(6.14)

(6.15)

(6.16)

(6.17)



6.3 Cartesian

6.3 Cartesian

6 LINEAR CURRENT INJECTIONS

o) = o (175)
- (e

6.3.1 First Derivatives

Slin [y Slin [\ _ Slin /N Slin o
luz (}‘) - lzru(A) - 1Vz~()‘) - lziu(A) - 0
lin \ Slin /3y Slin Slin /N
szT(A) lzrzz()‘) lziz,« (A> lzizi(A) - O

o 9l B o

ihn _ _ ailzn 8ilzn 8ilzn ailzn

X 8X ou ow 0z, 0z;

R L. .

slin __ __slin _

WSy T Ve=X

o ailzn R

slin __ __ slin _

w T gy T Ve =X

lin

Slin Oi ilinz o i;

Zr azr - 'z zr A

. oilin . .

slin slin

o= =1i,"z, = jL
z VA z
: 0z; ‘

6.3.2 Second Derivatives

Since it

derivatives are zero.
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(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

is linear with respect to u, w, z,, and z;, all of the corresponding second



7 LINEAR POWER INJECTIONS

7 Linear Power Injections

The linear power injection term s from (3.5), namely,

S

has the following derivatives.

7.1 Complex

7.1.1 First Derivatives

7.2 Polar

7.2.1 First Derivatives

élin o

aélin

§' (x) = Mv + Nz +§

alin
6S _ aélin 6§lin
8X ov 0z
aélin .
=M
ov -
aélin .
=N
0z

o 8élin 8§lin 6@“” 8§lin
ox - 00 ov 0z, 0z;
aélm ) .
alin .
59 — SvVve= JM [v]
aélin . R
— =&, = Mle
1 %4
aélm ) R
0z, 8.2 =N
r
aélm ) .
alin .
82 - Sz ZZZ - ]H
7
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(7.1)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)



7.2 Polar 7 LINEAR POWER INJECTIONS

7.2.2 Second Derivatives

Since si™ is constant, all second derivatives involving z, and z; are zero. Similarly,
lin

sim(X\) is zero and the other three are diagonal matrices.

. O /. Te
~lin _ = | alin
Sin(A) = o (sw )\> (7.10)
$55(A) SGz(X) 0 0
_ |8 0 00 (7.11)
0 0 00
0 0 00
L O /7 Ta
~lin _ 2 | galin
Seg () = 90 < 0 /\) (7.12)
0 /. N
= 5 (I VIDL'A) (7.13)
=J [MTS\] Vo (7.14)
S MTS\} v] (7.15)
o 9 /. T«
alin [ alin
Sp(N) = = (su A (7.16)
0 AT
-2 ([e]M )\) (7.17)
- [MTS\} co (7.18)
o
=7 [M )\] [e] (7 19)
o B T.
alin [ alin
b = = (s773) (7.20)
0 ~To
= — (jvM'A) (7.21)
= [MTX] 0 (7.22)
~ T~
_ [M )\] e] (7.23)
=85 (N) (7.24)
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7.3 Cartesian 7 LINEAR POWER INJECTIONS

LA 0 CToA
SL(A) = o (éfj’”T)\ (7.25)
0 A Ta
— 2 (lelM >\> 7.26
— (le] M1 (7.26)
- MTA} e, (7.27)
~0 (7.28)
~lin 5\ _ glin S\)T _ glin (5\) __alin (S\)T -0 7 29)
OZT( ) Szre( Sezi z;0 ( :
~lin _Alin /3 T _alin /N __ alin T o
SuzT(A) - zru(A) - uzi()\) - ziu(A) - 0 (730)
s (A) =8 (A) =8 (A =8 (X)) =0 (7.31)
7.3 Cartesian
7.3.1 First Derivatives
. aélln alin alin alin alin
alin __ _ 08 08 08 08
S5x = ox - [ ou ow 0z, 0z; (732)
) 8§lm ) R
alin alin
_ T iy M 7.33
= B gy, = (7.39
] 8§lm ] R
Alin — ~lin w = M 734
w = g SV Ve =M (7.34)
) 8Alm ) R
o= B0 g, )
) 8Alm ) .
élzZ@n = asz' = élzmzzi = ]H (736)

7.3.2 Second Derivatives

Since s"" is linear with respect to u, w, z,, and z;, all of the corresponding second
derivatives are zero.
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8 COMPLEX POWER FROM LINEAR CURRENT TERM

8 Complex Power from Linear Current Term

This section considers the derivatives of the complex power injection term s’ defined
in (3.7), namely,

8.1 Polar

We define the following terms, both for notational convenience for the derivations
and for computational savings during computation of the derivatives.

A=[¥] [lln] J (8.3)

B=[]Y (8.4)

C =B[v'| (8.5)

D= (8.6)

£=[v]L (8.7)

F=J"[A (8.8)

G=FC (8.9)

H = [v'] <(]—“B)T - [BTS\D (8.10)

K=G—-FA=F(C—-A) =jFs, (8.11)

L=FE (8.12)

M =DcL (8.13)

8.1.1 First Derivatives
“ 8@1 Ny Ny 5! 5!

f-- % B & &) (5.4

=[j(A=C) (A+CO)D & —jE] (8.15)

o 05 _ i AT o (8.16)
Sg = 8_0 = |1 8_9 \% 90 .
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8.1 Polar 8 COMPLEX POWER FROM LINEAR CURRENT TERM

= [ G + B GY V) (8.17)
—j([{" | ¥ - FY ) (8.18)
— j(A-C) (8.19)
t- 5 [ e 2
= [ e + WX e (8.21)
= ("™ ML+ FY v ] (8.22)
—(A+C)D (8.23)
= gir =[]+ 1) v, (8.24)
= [W]L (8.25
=& (8.26)
82, = gi = —jsl, = —j WL = —j€ (8.27)

8.1.2 Second Derivatives

Since s, and s. are constant with respect to z, and z;, all second derivatives

involving only z, and z; are zero.

. 9 T-
ol _ Y far
$1a(A) = o <sm ,\) (8.28)
[ $h0(N) S0,(0) 802, (X) 80 (Y
/\I A~ A~ ~
S 0( ) Suu( ) Sl/ (A) SV (A)
— v N N Zr Zi 2
S0 s, 0 0 (8:29)
| S2o(A) sL,(A) 0 0
H+K  jH -KNO)D jL L
N GLT MT 0 0 '
L7 —jMT 0 0
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sh,(A) = (% (gﬁ) (8.31)
= DG [ - vy T ) A) (.32)
s (T [ WA - YT 98 (5.33)

A &

-vIY T[A]gﬁggg|;sz[v1X}<j[vﬂ>) (8.34)
= JTR]AY v - T (1] (A )2

F VX ALY - [ 1A (8.35)
=V (X FAL- X 4]

+ I [ (X v — [i“" } J> 8.36)
MK (8.7)

5L9(A) = % <§£T5\ (8.38)

_ % (771 [i ] At fe] YT 9] A (8.39)
= I (Y ) T [ N g fe] T

Hle X 9 [ [9)A] (i) (8.40)
=i (e (X WAL~ [X 1A

- TN (X v - 1] 1)) (8.41)



8.1 Polar 8 COMPLEX POWER FROM LINEAR CURRENT TERM

— jD(H - K) (8.43)
§! o(A) = % <sfrT5\ (8.44)
_ % (L*T ] A) (8.45)
=L NGV (8.46)
— L N[0 (8.47)
_ LT (8.48)
$Lo(h) = o (817R) = 8L o(A) = £7 (5.49)
35, (A) = a% (353 (8.50)
=i (LT P = X7 W]A]) v
— (WX =T [ R AT ) (8.51)
— 1T - KD =8, (A (8.52)
st (A) = 5% (éfﬁ\ (8.53)
_ a% (276 [ ] A+ X [914) (8.54)
= JT[e][A ¥l +g7 [ (A £
1Y N E L X A <2< (8.55)
— W (TARY VI RN BT (856)
=D(G+G")D (8.57)
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8.1 Polar

8 COMPLEX POWER FROM LINEAR CURRENT TERM
N 2 0 A7 TR
SL(X) = o (szT ,\> (8.58)
a AxT ~
- = (L ] A) (8.59)
=L (A [e] (8.60)
AxT oo
=L [Afe]J (8.61)
- MT (8.62)
P R .
SL(N) = 5 (85TA) = =il () = =M (8.63)
R < 0 [.T:
S5, (N) = 5 (3574) (8.64)
0 Sin* | 1o 1~ A N
= (i (LT[ W1 - Y W) A) (8.65)
. ailm
7T ~
= TN V) (8.66)
= jJT (AL 8.67)
=jL=5l4 (A (8.68)
s () =2 (s”ﬁ\) (8.69)
vz, azr v
8 A1 [elin* 1 *T o a
= 5 (_T [¢] [’ }A+ ] Y [¥] A) (8.70)
. ailin*
]
pu— . 1
TN fel (8.71)
= JT[A][e]L 8.72)
=M=8L,"(N) (8.73)
PR R A A
6, (A) = 5 (85'A) = =j8hs, = L =51 (N (8.74)
a8 = L (8TA) = sl = M =4L,T() (8.75)
sL. (N =8l (M) =8 (X =8 (X)=0 (8.76)



8.2 Cartesian 8 COMPLEX POWER FROM LINEAR CURRENT TERM

8.2 Cartesian

We define the following terms, both for notational convenience for the derivations
and for computational savings during computation of the derivatives.

A= [ll"] J (8.77)
B=[¥]Y (8.78)
C=[L (8.79)
D=J"[\ (8.80)
£E=DY (8.81)
F=E+ET (8.82)
G=j(E-¢&T) (8.83)
H =DL (8.84)
8.2.1 First Derivatives
AT s’ A - L,
== | A a o ] (8.85)
=[A+B j(A-B) C jC] (8.86)
g _ 08 ] oY AN o (8.87)
Su ™ 9 ouw Y ou '
:[ }JH]Y (8.88)
—A+B (8.89)
08! ov oilin
Y — <lin ~
v = Jw [l } ow ¥ ow (8.90)
= j ([ll"} J - [¥] Y") 8.91)
=j(A-B) (8.92)
AI Aq. . *
2, = SZ = [ 1] s, (8.93)



8.2 Cartesian 8 COMPLEX POWER FROM LINEAR CURRENT TERM

S, = = —Js, = —jC (8.95)

. Bl T-
ol _ Y far
$1a(A) = o (sw A) (8.96)
[ 8L, sL,(A) 8L (N sL.(N)
ST u(A) 8L ,(N) 0 0

g Lo oo
| —JjHT HT 0 0
N 0 (.5T:
Shu(X) = - (su A) (8.99)
_ % ((a7 [ + v %) A) (8.100)
= % (f BNEEAS ‘N v) (8.101)
—ITNY YA (8.102)
_F (8.103)
L () = % (é{f)l) (8.104)
% (j (f [ﬁ"] o [o]) X) (8.105)
i (TN T A (8.106)
= (TN - Y [N]J) (8.107)
—g (8.108)

42



8.2 Cartesian 8 COMPLEX POWER FROM LINEAR CURRENT TERM

8L (A = a% (éﬁf&) (8.109)
- a% (L*T ] 5\> (8.110)
—L A J (8.111)
=H" (8.112)
8L (A = % (ég TS\) = —jsl (A = —HT (8.113)
sl (A) = % (é{fﬂ) (8.114)
- % ( J7 [ll"} +y [\7]) 5\) (8.115)
= a% (f PN ‘all PN v) (8.116)
=i (Y NI-ITNY (8.117)
=gT=3sL T(\) (8.118)
5L (A) = @% (é{fﬂ) (8.119)
- a% (j (f [ll“] ' [0]) X) (8.120)
o (T T ) (8.121)
=i (TN ) - YT A GD)) (8.122)
= ITNY + YA (8-123)
_F (8.124)
8L, w(A) = % (éi,.TX> (8.125)
_ % (;*T ¥1A) (8.126)
=L N (8.127)
T (8.128)
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8.2 Cartesian 8 COMPLEX POWER FROM LINEAR CURRENT TERM

0 TR
~T _ Y fal — ol — T
Sziw(A) - aw ( Z; > .]Sz,«w<A) H (8129)
S (=2 (s”ﬂ) (8.130)
uz, azT u
_ 0 T [31in* T e s
= 5 ((i [1 } +Y [v]) A) (8.131)
. ailzn*
g7 132
LA 5 (8.132)
=JT AL (8.133)
—H =8N (8.134)
S () =2 (éf TS\) (8.135)
wz, azr w
_ O (7 [atim e s
= 5 (] J [1 ] Y M) A) (8.136)
R ailzn*
_ T
= jd " [A] 97 (8.137)
=jJT (AL (8.138)
= jH =5, (A (8.139)
< 0 T} < TR
Al _ Al Al gy _al
R (sw ,\) = sl (N =H =58\ (8.140)
L. (N =8 (N=8_N=8_N=0 (8.141)
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9 COMPLEX CURRENT FROM LINEAR POWER TERM

9 Complex Current from Linear Power Term

This section considers the derivatives of the complex current injection term i® defined
in (3.13), namely,

EEA

i%(x) = [s"(x)]"A (9.1)

*

— [Mv + Nz + 5| A 9.2)

9.1 Polar

We define the following terms, both for notational convenience for the derivations
and for computational savings during computation of the derivatives.

A=[A" [sl} J (9.3)
B=[ATM (9.4)
C=A- B[V (9.5)
= (A [s" ] — (A" (v (9.6)
D=y (9.7)
£=[AN (9.8)
F=J"[A (9.9)
G = FB[v'] (9.10)
M= [BTS\} V'] (9.11)
K= (FAT (9.12)
L=G+G -H-K (9.13)
M=D(2K-G-G")D (9.14)
N =FE (9.15)
(9.16)
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9.1 Polar 9 COMPLEX CURRENT FROM LINEAR POWER TERM

9.1.1 First Derivatives

~ 8is 9 o o o
:S is is i is
f--=% & & & (9.17)
=[jC —CD & —j& ] (9.18)
o afs % Ak Ak Ak
i = o = [ GIA )T+ [AT) (—5M v (9.19)
[)Ar* %,—/
96 65{;’;’*
—j A7) (|85 2 - M v)) (9.20)
=jC (9.21)
N aiS N 11 Rk Ak A K _ %
15— S0 = [8] (< 5] M [A] ) + (AT M ] V) (9.22)
aV ~ - L N e’
oA o
— A * ~lin* N R -1
=~ A ([ g - ) ) (9.23)
— (D (9.24)
2 ais i % ok <
S __ lalin
R L NP (9.25)
oA gslin*
Ozr Oz
= [A N (9.26
=£ (9.27)
A /.\S A
18 =0 =i = ¢ (9:28)
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9.1 Polar 9 COMPLEX CURRENT FROM LINEAR POWER TERM

9.1.2 Second Derivatives

Since i and 15 are constant with respect to z, and z;, all second derivatives involv-
ing only 2z, and z; are zero. Some of the second derivatives of i° are derived using
the first derivatives of CT\, which are derived first as follows.

a% (CTX) - (%( JT [sl”] - [v*]M*T) A] 5\) (9.29)
= (T[] ANA) - (v 8T AT A) (9.30)
=7 [$ NG IATT L+ T AT (A (M )

aA* aslin*
- vIMCT N GAT T - M AT (i) (9:31)

(
_ (9.33)
() = (] ) 03) 031
_ a% (_T [sl"] A'] 5\) - (% VM A ) (9.35)
= 7 (8 A ([ AT ) T AT A (M [e'])

A ]5\} el 030
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9.1

Polar
52 (€3) = o2 (77 [ - v1naT) 1473)
= o (T[] A3
=T NAT N
as”
=JTAE=N
52 (€8) = gL () =i

The second derivatives of i° are then derived as follows.

T

2%

>

i50(A) 15, (0 15 (N) (N
ie(N) ) 1. 135N
iZo(A) iZ,(A) 0 0
26N 12,0 0 0

L LD N N

jDL M —DN DN

GNT —NTD 0 0

| NT GNTD 0 0

0 [:6T¢ T .0 (T4
56 (15 2) = 5 (1€73) =iz (")
(—jL)
2 (iSTS\) _ 9 (— [1/]_1CT5\> —_
06 \'v 06

W] (L)
jDL
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(9.42)
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(9.44)

(9.45)

(9.46)

(9.47)

(9.48)
(9.49)

(9.50)

(9.51)
(9.52)



9.1 Polar

—
X
5o
—
>
SN—

9 COMPLEX CURRENT FROM LINEAR POWER TERM

=N [N A,

LT S
=N [A]Jj[AT]
= /N NJA]T
= jNT

O (T S (A T
:a_e(lzi A) = i A =N
-2 () = 2 (o) = )
=JLTD =15 (N)
_ (% (IETA) - a% (— [u]—lcTA>
=[] 8% C’TS\> - [CT)\] 8% (v

TL T [CTA v
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— JTAAM ) - MY N AT T (0.68)

=M (9.69)

i ,(A) = 8% (IZTX (9.70)
_ a% (NTAT)A) (9.71)

~ NN A, (9.72)

= N L] (A (9.73)
=N AIATIR) (9.74)
~NTD (9.75)

5 A = a% (ifiTA) = —ji¥ (A)=jNTD (9.76)
5= (;Z (Ig‘TS\) = o (chX) _y (CT5\> (9.77)
=T [NJ[ATN (9.78)

=N =15, (N (9.79)

0z, 0z, 0z,
=[] 'JTAJ[AN 9.81)
= N =1, (9.82)
. 9 [igTs . o T
15, (0 = o (157A) = i, () =V =15, (Y (9.83)
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15, (0 = = (i874) = i, ) = oV =5, T

vz; 822' 1,
%

~ ~

5o N=2,N=i5,N=1J,N=0

ZrZr ZrZ;

9.2 Cartesian

(9.84)

(9.85)

We define the following terms, both for notational convenience for the derivations

and for computational savings during computation of the derivatives.

9.2.1 First Derivatives

TR S (CATP )+ A M
Y ou - N
oA* aslin™
ou ou
—[A')M" - [$77 AT T
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OA* aslin*
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=—Jj¢ (9.101)
0i% . o
S _ _ |alin
8= = [ }\9,+[A] N (9.102)
oA* salin*
ozr Ozp
=[A TN (9.103)
=B (9.104)
~ :S ~
2= gl = —ji;, = —jB (9.105)

9.2.2 Second Derivatives

Since i and ifi are constant with respect to z, and z;, all second derivatives involv-

ing only z, and z; are zero. Some of the second derivatives of i® are derived using
the first derivatives of €T\, which are derived first as follows.

% (5T5\) - % ((MT A - J7 [sl"] [A*P) :\) (9.106)
- % (M*T A"] 5\) - % (f [sl"] A 5\) (9.107)
=M A(-[AT )

~J7 [A“"*]uwg ATCAT S -JTATA M (9.108)
—ogT [sln] N AP T u

- (MTNATP I+ T AT M) (9.109)
=G (9.110)
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a% (€74) = a% (v (AT — a7 [s° [ATP) A) (9.111)
_ % (M*T A7) )1) _ % (f [sl”} [A*]2£\> (9.112)
=M AGAT T

— [ N2 GATT ) - TTATT A (M) (9.113)

~ ~—

o(A")? astin®
ow Ow

L

-MT AP - T AT M) (9.114)
_ g (9.115)
0 TS 0 ST A T [atin*] 14 %12\ &

%(5 A):a—%«M A —J [s }[A])A) (9.116)
. _JT(% ([ AP A) (9.117)
=—JTAJATT \H/ (9.118)
—H - (9.119)

a% (€7A) = —j% (£7A) = - (9.120)
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The second derivatives of i® are then derived as follows.

« ~ O /raT~
25 _ 9 [:s
i () = D (1m A) (9.121)
IRCVI IOV O VI SN PN
5,00 2,4 0 0
i2.,(A) 12, 0 0

| 99 -9 —JH -H (9.123)

5 Q 0 PN 0 ~
i) = - (15 A) = <5T>\> (9.124)
=g (9.125)
S /A 0 25 TR 25 /R .
5, () = o= (1574) = i) = —jg (9.126)
2 Q 0 2o Tg 0 Q
2.0 = 5o <li ) = (BTA> (9.127)
0 A kT Akl oA
- = (E A M) (9.128)
— N A (- [A ) (9.129)
H,*_/
QA
ou
- NTATNJ (9.130)
—H' (9.131)
3 3 0 (:gTx 2 R .
liu()‘) =5 (lf )\> = —ji5 ,(A) = —jHT (9.132)
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= -39 (9.134)

N A O /raT~ « N
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50 () = 5o (5 A) = —jil,(N) = =0 (9.135)

. 2V DO R

«S G O - T

1A = o <IZT ) o (B A) (9.136)

a A kT Ak A
= 5 (m A ]A) (9.137)
N AGAT T (9.138)
@

— N AATP S (9.139)
= —jH" (9.140)

N ~ 0 /raTa~ N ~

:S _ Y [:s _ 38 _ T

lzi'w(A) - aw (lzi ) jlzr'w(A) H (9141)

I R 9 /o1

S .S _ T

i (N =5 <1u A) = 5 <€ >\> (9.142)
—H =i, (A (9.143)

o an O [fagTe o e T

29 . 'S _ 58 _ sy _3S

e (V) = 5 (i5'A) = i (A = =1 =1, (V) (9.144)

s - 0 [+aT2 s - se T oo
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10 SQUARE OF COMPLEX PORT INJECTIONS

10 Square of Complex Port Injections

For a complex port injection function g(x), representing the complex power or com-
plex current injections, let h(x) represent the squared magnitudes of the injections.

h(z) = [g(z)] g(z) (10.1)

The derivatives of h can then be expressed in terms of the derivatives of g as follows.

10.1 First Derivatives

h: = [g"] 8z + [g] 8" (10.2)
= [g"] 8= + ([g87] 82)" (10.3)
=2-R{[g"] g} (10.4)
=2- (R{[g]}*{g} + 3{[g]}3{g=}) (10.5)
10.2 Second Derivatives
9 T
hao(p) = % (he' 1) (10.6)
= a% (ng g +g."" [g] u) (10.7)
— Gaa([g] 1) + 8o (1] 8a" + Baa” (&) 1) + 22" [11] 8o (10.8)
=2 RN\ aa([g8"] 1) + g:cT 1] gm*} (10.9)
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11 Square of Real Port Injections

For a real port injection function g(x), representing the real power injections, let
h(x) represent the square of the injections.

h(z) = [g(z)] g(z) (11.1)

The derivatives of h can then be expressed in terms of the derivatives of g as follows.

11.1 First Derivatives

he =2[g] g, (11.2)
11.2 Second Derivatives
d T
Paali) = - (ko 1) (11.3)
= a% (29, " 9] 1) (11.4)
=2 (galgl ) + 9. (M 9.) (11.5)
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12 NODE BALANCE CONSTRAINTS

12 Node Balance Constraints

12.1 AC Model

For the AC model, the standard KCL or node balance constraints are expressed as
a complex vector equality in the following form.

gl(x) =0 (12.1)

If only a subset, indexed by ki, of the node balance constraints are needed, let
J}, be the corresponding matrix (see Section 2.2) used to select the constraints of
interest, and let J,, be used to select the corresponding ports of the aggregate model
as represented by g° and g’. That is, ky is a vector containing the index of each
column of C' with a non-zero in any row in k;. Then we can define the following.

g (x) = J;, g () (12.2)
C=J,CJ," (12.3)

g°(x) =J,,8°(x) g"(z) = J,, 8" () (12.4)
glx)=J,g'(x) &' (x)=J,,g" () (12.5)

12.1.1 Power Balance

For complex power balance, gh“!(x) and its derivatives are defined from (4.24)—(4.31)
in terms of g¥** or g% using the aggregate model for the entire system.
g"(z) = Cg®"(x) = Cg*(A @) (12.6)

And for only selected constraints of interest, we have the following.

g (z) = Cg"(x) = C°(A' ) (12.7)
gl = Cglv = CglA"" (12.8)
=C (sL+sm+spm AT (12.9)

~kel (3 . aSsys/ A AN . araS ATy AT
— A/ ($L,(C'N) +8(CTA) + (' A)) AT (12.11)
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12.2  DC Model 12 NODE BALANCE CONSTRAINTS

12.1.2 Current Balance

For complex current balance ghkel(x) and its derivatives are defined from (4.32)-
(4.39) in terms of gl*¥® or g! using the aggregate model for the entire system.

g"“!(z) = Cg"™*(x) = Cg'(A" x) (12.12)

And for only selected constraints of interest, we have the following.

g (x) = Cg'™(z) = Cg'(A " x) (12.13)
Akcl Cg[ Sys __ CfgIA/T (1214)
—C (i + i) a7 (12.15)
() = glas(CTA) = A8, (C VAT (12.16)
— A (€N +EL(CN) + i€ N) AT (12.17)

12.2 DC Model

For the DC model, the standard KCL or node balance constraints are expressed as
a real vector equality in the following form.

g z)=0 (12.18)
The real power balance function, g*!(x) and its derivatives are defined from
(4.40)—(4.43) in terms of g or g7 using the aggregate model for the entire system.

g“(x) = Cg"™"(x) = Cg"(A'x) (12.19)

And for only selected constraints of interest, we have the following.

g (x) = Cg"(z) = Cg"(ATx) (12.20)
g5 = Cgr™ = Cgr AT (12.21)
=CJ,,| BCT KD'] (12.22)
=C[BC" KD ] (12.23)
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13 BRANCH FLOW CONSTRAINTS

13 Branch Flow Constraints

The branch flow constraints can be expressed as a real vector inequality of the form
hiv () < 0. (13.1)

In each of the cases below, the flow constraint is based on a set of port injections
from the aggregate model for transmission lines. We will define either a complex
port injection function h(x) or a real port injection function h(x) to express the
constraint and its derivatives.

13.1 AC Model

13.1.1 Squared Apparent Power

Let h(x) be the complex power port injection function from (4.24)—(4.31) based on
g% or g% with its derivatives.

h(z) = g5 (z) = g°(A " 2) (13.2)
=8/(ATz) +8"(A T x) + 8" (A ) (13.3)

h, = g3 =gSA"" (13.4)

= (8L 4 8lm 4 gnin) AT (13.5)

hao (1) = o3 (1 > Agl, (A" (13.6)
= A (85, (1) + 85 (p) + 850 () A7 (13.7)

Then, based on (10.1)—(10.9), the squared apparent power flow constraint and
its derivatives can be written in terms of h as follows, where imax is the vector of
specifed apparent power flow limits.

h*" (@) = [h(@)]'h(z) - f7 (13.8)
_ [gS(A’Ta:)]*gS(A’Ta:) - (13.9)

h™ =2 (R{[D]}R{h,} + S{(h]}S{h,}) (13.10)
—2([»{e5a e }| n{es} + [s{efaT)}| S{gf}) AT (1311)

hag (1) = 2 R {hee (0] ) + b [ hy"} (13.12)
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=24 {es, ([¢°a )| n) +&5 (u g5} A7 (13.13)

13.1.2 Squared Current Magnitude

Let h(x) be the complex current port injection function from (4.32)—(4.39) based on
gl or gl with its derivatives.

h(z) = &' (z) = &' (4" ) (13.14)
=imA ) +i%(A x) + 1A T x) (13.15)

h, =gl =glA” (13.16)

_ (ig” +i5+ igl”) AT (13.17)

hao (1) = 852 (1) = A'8L, (WA (13.18)
= A () + ) + 25 () A (13.19)

Then, based on (10.1)—(10.9), the squared current magnitude constraint and its
derivatives can be written in terms of h as follows, where f iy 18 the vector of specifed
current magnitude limits.

h'(z) = [h(zx)]"h(z) — F (13.20)
_ [gI(A’Tm)rgI(A’Tm) - (13.21)

Ry =2 (R{[h]}R{h,} + S{[h]}S{h,}) (13.22)
=2 ([»{eg' @)} R{ei} + [s{e' AT }| o{es}) AT (1323)

BT (1) = 2 R (g ([0°] 1) + b, [pa] b, ") (13.24)
—24%{gl, ([¢'aT)] ) ANV (13.25)

13.1.3 Squared Active Power

Let h(x) be the active power port injection function from (4.24)—(4.31) based on
g% or g% with its derivatives.

h(z) = R{g"V(x)} = R{g"(A @)} (13.26)
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= R{s'(A ) +8"(Ax) +§"(A x)} (13.27)

he = R{g>} = R{g51 A" (13.28)

= R{sL + & g AT (13.29)

hoa (1) = R{EZ (1)} = AR{E5, (1)} AT (13.30)
= AR(8L, (1) + 850 () + 85 () A (13.31)

Then, based on (11.1)—(11.5), the squared active power flow constraint and its
derivatives can be written in terms of h as follows, where f s the vector of
specifed active power flow limits.

A" (z) = [h(z)| h(z) — f7 (13.32)
_ [@R{gS(A'Tw)}] R{e'(A )} - F* (13.33)

hi —9[h|h, (13.34)

= 2[R{g(4"2)}| RigsrA” (13.35)

R (1) = 2+ (Rax([R] ) + ha' ] ha) (13.36)

=24 (%{g([Re*@ o)} )} + Ried) W R(el}) AT (1337)
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13.2 DC Model
13.2.1 Squared Active Power

Let h(x) be the active power port injection function from (4.40)—(4.43) based on
g or g, with its derivatives.

h(z) = g™ (x) = g"(ATz) (13.38)
hy =g, = g, AT (13.39)
= [BC" KD' | (13.40)

Then, based on (11.1)—(11.5), the squared active power flow constraint and its
derivatives can be written in terms of h as follows, where imax is the vector of
specifed active power flow limits.

h'(z) = [h(z)] h(z) - 2 (13.41)
= [§"(AT)] g"(AT2) - 2 (13.42)

hy" =2[h] b, (13.43)
—2[9"(AT®)] [ BCT KD'] (13.44)
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14 Reference Voltage Angle Constraint

Voltage angle constraints at reference nodes for the AC polar formulation or for
the DC model appear as simple variable limits, but for the AC model cartesian
formulation the constraint takes the following form.

gi(xz)=0 (14.1)
Let J be the matrix used to select the reference node voltages v.
v=Jv. (14.2)

With 8™ specifying the corresponding desired reference node angles, the angle
constraint function can be written

g (x) = JO(x) — "' (14.3)

o(x) — 6™, (14.4)

The derivatives then are based directly on those from Section 5.3.

14.1 First Derivatives

agref

g’ = u 0, =[] [w]J (14.5)
R A P R CL (14
14.2 Second Derivatives
G N) = 0uu(N) =207 (N (D] (4] [w] J (14.7)
gt (A) = OuwN) = T (N [2] 7 ([w]? - [@)) I (14.8)
gt (A) = 0uu(N) = I (A [D] 7 () — [@)) J (14.9)
G (A) = Oy (N) = =20 [N [D] " [a1] [w] J (14.10)
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15 VOLTAGE MAGNITUDE LIMITS

15 Voltage Magnitude Limits

Voltage magnitude limits only apply to the AC model. For the polar formulation,
they are simple variable limits, but for the cartesian formulation the constraints take
the following form.

g (x) <0 (15.1)
v"Mz) <0 (15.2)
where
(@) = () — oM (15.3)
""" (@) = M — D(w). (15.4)

The derivatives then are based directly on those from Section 5.3, where the

derivatives of g”min are simply the negative of the corresponding derivative of g¥"" .

15.1 First Derivatives

g =0, =[] 4] J (15.5)
g, " =0y =0 W] J (15.6)

15.2 Second Derivatives

G (1) = D) = I [p] [9]7° [w]* J (15.7)
G (1) = Do) = =" (] [0]° [@1] [] I (15.8)
G (1) = Do) = =" (] (9] [1] [w0] I (15.9)
G (1) = Do () = I (] (0] ° @) T (15.10)
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16 Voltage Magnitude Squared Limits
Alternatively, voltage magnitude limits can be implemented for the cartesian formu-

lation of the AC model in terms of the square of the voltage magnitudes. In this
case we have

This results in slightly simpler derivatives, where each derivative of g™ is still
simply the negative of the corresponding derivative of g

16.1 First Derivatives

A L I PR ITY (16.3)
gun = 8%w = 2[D] Dy = 2[w] J (16.4)

16.2 Second Derivatives

pmax a VrnaxT
w (H) =50 (gu u) =2J" [u]J (16.5)
Vmax a Vl’l)aXT
wo (H) =5 (gu u) =0 (16.6)
min a max

wu (B) = 5~ (gfv Tu) =0 (16.7)
Vmin a VmaxT T

G () = Y0 (gw u) =2J [pu]J (16.8)
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17 Branch Angle Difference Limits

Branch angle difference limits can be written as

o (17.1)

(17.2)

x)

IN

0
gemin ( 0

IN

x)

Let C™ be defined as the difference between the incidence matrices C' and C* for
the “from” and “to” ports of the aggregate branch model, respectively.

th — Qt . Qt (173)

If J is used to select the branches of interest and th = thlT, then the branch
angle difference constraint functions can be written as linear functions of the voltage
angles.

¢ () =C"" o 0™ (17.4)
(@) = 0"~ C"'o (17.5)

For the AC polar formulation or for the DC model, these are simple linear func-
tions the voltage angle variables 8, but for the AC model cartesian formulation these
angles are nonlinear functions of x, i.e. 8 = 6(x).

The derivatives then are based directly on those from Section 5.3, where each
derivative of g?™" is simply the negative of the corresponding derivative of go"

17.1 First Derivatives

omex X
A S e M ) (17.6)

ax emax A A
gom = a%_w = "9, = C" b [y (17.7)
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17.2 Second Derivatives

g (1) = 0uu(C" ) = 2| €M) (V] [u] ] (17.8)
g (1) = Buns( ") = [C"pa] ] (1w] ~ [u]?) (17.9)
g (1) = Ouu € 1) = [C"pa] ] (1] ~ [u]?) (17.10)
gl (1) = Ounn(C" 1) = =2 | C"pa] V] [u] ] (ar.11)
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