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1 Introduction

1.1 Background

MP-Sim is a package of Matlab language M-files1 for simulating a variety of schedul-
ing problems. The MP-Sim project page can be found at:

https://github.com/MATPOWER/mpsim

MP-Sim was developed by Haeyong (David) Shin as an undergraduate student
at Cornell University under the supervision of Ray D. Zimmerman of PSerc2 at
Cornell University for running simulations pertaining to electric power systems such
as unit commitment and economic dispatch problems. For purposes of illustrating
the structure of MP-Sim, a burger shop example is used throughout this manual.

1Also compatible with GNU Octave [1].
2http://pserc.org/
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1.2 License and Terms of Use

The code in MP-Sim is distributed under the 3-clause BSD license [2]. The full text
of the license can be found in the LICENSE file at the top level of the distribution
or at https://github.com/MATPOWER/mpsim/blob/master/LICENSE and reads as
follows.

Copyright (c) 2015-2017, individual contributors (see AUTHORS file

for details). All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.
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1.3 Citing MP-Sim

While not required by the terms of the license, we do request that publications derived
from the use of MP-Sim explicitly acknowledge that fact by citing this manual [3].

H. Shin and R. D. Zimmerman, “MP-Sim User’s Manual,” 2017. [Online]. Available:
http://www.pserc.cornell.edu/matpower/docs/MP-Sim-manual-1.0.pdf

1.4 MP-Sim Development

The MP-Sim project is based on an open development paradigm, hosted on the
MP-Sim GitHub project page:

https://github.com/MATPOWER/mpsim

The MP-Sim GitHub project hosts the public Git code repository as well as a
public issue tracker for handling bug reports, patches, and other issues and con-
tributions. There are separate GitHub hosted repositories and issue trackers for
Matpower, MOST, MIPS, MP-Sim and the testing framework used by all of them,
MP-Test, all available from https://github.com/MATPOWER/.

2 Getting Started

2.1 System Requirements

To use MP-Sim 1.0 you will need:

• Matlab® version 7 (R14) or later3, or

• GNU Octave version 3.4 or later4

• MP-Test, for running the MP-Sim test suite.5

For the hardware requirements, please refer to the system requirements for the
version of Matlab6 or Octave that you are using.

In this manual, references to Matlab usually apply to Octave as well.

3Matlab is available from The MathWorks, Inc. (http://www.mathworks.com/). Matlab is
a registered trademark of The MathWorks, Inc.

4GNU Octave [1] is free software, available online at http://www.gnu.org/software/octave/.
5MP-Test is available at https://github.com/MATPOWER/mptest.
6http://www.mathworks.com/support/sysreq/previous_releases.html
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2.2 Installation

Installation and use of MP-Sim requires familiarity with the basic operation of Mat-
lab or Octave, including setting up your Matlab path.

Step 1: Clone the repository or download and extract the zip file of the MP-Sim
distribution from the MP-Sim project page7 to the location of your choice.
The files in the resulting mpsim or mpsimXXX directory, where XXX depends on
the version of MP-Sim, should not need to be modified, so it is recommended
that they be kept separate from your own code. We will use <MPSIM> to
denote the path to this directory.

Step 2: Add the following directories to your Matlab or Octave path:

• <MPSIM>/lib – core MP-Sim classes and functions
• <MPSIM>/lib/t – test scripts for MP-Sim

Step 3: At the Matlab prompt, type test mpsim to run the test suite and verify
that MP-Sim is properly installed and functioning.8 The result should
resemble the following:

>> test_mpsim

t_mpsim_shared_x_numeric....ok

t_mpsim_shared_x_queue......ok

t_mpsim_process.............ok

t_mpsim.....................ok

t_burger_shop...............ok

t_burger_shop_2d............ok

t_opf_sim...................ok (8 of 8 skipped)

All tests successful (186 passed, 8 skipped of 194)

Elapsed time 1.03 seconds.

Step 4: (optional) Edit the <MPSIM>/lib/mpsim config.m file to specify the path
to the base directories for MP-Sim inputs, outputs and temporary work
files, found in the variables inputdir, outputdir and workdir, respectively.
The values of these paths are denoted by <INPUTDIR>, <OUTPUTDIR> and
<WORKDIR>. If the inputdir variable is left blank, '<MPSIM>/sim data'
will be used by default as the <INPUTDIR>. If outputdir and workdir are
left blank, the default is to use the value of <INPUTDIR>.

7https://github.com/MATPOWER/mpsim
8The tests require a functioning installation of MP-Test.
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2.3 Running a Simulation

Running a simulation based on MP-Sim requires access to (1) a simulator, consisting
of the set of subclasses that implement the simulator and its various process and
state objects, and (2) any input data required by the simulation.

2.3.1 Simulator

The subclasses that implement the simulator and its process and state objects are
user-defined and may be placed anywhere in your Matlab or Octave path. It is
recommended that they be kept outside of <MPSIM>, separate from the MP-Sim
distribution, which should not need to be modified by the user. For instance, the
burger shop and opf sim classes in <MPSIM>/lib/t are examples of simulators.

2.3.2 Input Data

For a given simulator, such as burger shop, the inputs for a given batch of simulation
runs are identified by a simulation name which we will denote <SIMNAME>. The
simulator will look for the input data inside the <INPUTDIR> directory specified
in <MPSIM>/lib/mpsim config.m, more specifically, in the simulation-specific input
directory <INPUTDIR>/<SIMNAME>/inputs, which we denote <SIMINPUTDIR>. The
organization and format of the input files within this directory are completely user-
defined. The only requirement is that they be consistent with what is expected
by the simulator code. The inputs for the burger shop example can be found in
<MPSIM>/sim data/burger shop example/inputs, for instance.

2.3.3 Executing the Simulation

To run a simulation, instantiate the simulator object and call its run method with the
name of the simulation. For example, to run a sample simulation called 'burger shop example'
using the burger shop simulator, type:

sim = burger_shop();

sim.run('burger_shop_example');

or more succinctly:

burger_shop().run('burger_shop_example');
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Simulation options can be supplied to run() via additional arguments as name/value
pairs, or as a struct.9 For example, to turn on verbose display of simulation progress
and turn off the post-run pretty printed summary of burger shop activity and inven-
tory levels, type:

burger_shop().run('burger_shop_example', 'verbose', 1, 'post_run_on', 0);

For a list of all options, please see Table 4-7.

2.3.4 Accessing the Results

If the simulator creates output files in the course of execution, they will be found
in <SIMOUTPUTDIR>. The organization and format of the output files within this
directory are also completely user-defined.

2.4 Documentation

There are two primary sources of documentation for MP-Sim. The first is this
manual, which gives an overview of the capabilities and structure of MP-Sim and
provides a reference for the classes, properties and methods, and tutorial for creat-
ing your own simulation. This manual can be found in your MP-Sim distribution
at <MPSIM>/docs/MP-Sim-manual.pdf and the latest version is always available at:
https://github.com/MATPOWER/mpsim/blob/master/MP-Sim-manual.pdf.

The second source of documentation is the built-in help command. As with the
built-in functions and toolbox routines in Matlab and Octave, you can type help

followed by the name of a command or M-file to get help on that particular function.
All of the M-files in MP-Sim have such documentation and this should be considered
the main reference for the calling options for each function.

9Or as a combination of the two, with the options struct as the last argument.
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3 Structure of MP-Sim

MP-Sim is a general-purpose simulator that is easily adaptable to a myriad of situa-
tions, including those pertaining to electric power systems such as unit commitment
and economic dispatch problems. MP-Sim runs one or more simulations across a
sequence of discrete time steps, calling on a set of processes that execute at a certain
frequency to update a well-defined state from one step to the next throughout each
simulation.

3.1 Terminology

The following list of terms will be used according to their given definition:

Simulation: An operation consisting of updating a state x throughout a sequence
of discrete time steps, where new input may become available and additional
outputs may be computed at each step.

Simulator: A tool used to run a simulation, specifically an instance of an mpsim

object. A subclass of mpsim is used to define the components and behaviors of
a given simulator and the simulations it runs.

Simulation Run: The execution of a single instance of a simulation, starting from
a given initial state, along with its inputs and outputs.

Simulation Batch: A set of simulation runs grouped together under a single name
and with a shared initial state.

Simulation Name: The name assigned to identify a particular simulation batch.

Simulator State x: The set of information that fully describes the current condi-
tions at a given time step, summarizing any history of past actions. The state
consists of two kinds of information, process-specific state and shared state.

Input u: Data from outside the simulation that becomes available to the simulation
at a particular time step, used to determine the state at the same time step.

Output y: Any additional information, besides the state, computed at each time
step in a simulation. The simulation “results” generally consist of a summary
of the individual per-step outputs y.

Update function f(·): A function that determines the state x at each time step
based on the state at the previous time step and the current input.
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Output function g(·): A function that generates simulation output y at each time
step based on the state at the previous time step and the current input.

Process: A task or operation performed in a simulation run with specified frequency
and duration. The operations performed by a simulator are grouped into pro-
cesses. Both the state x and the output y, along with the update and output
functions f() and g() are partitioned according to the set of processes defined
by the simulator. Each process has its own output function which determines
its portion of the output y, and its own update function which updates its
portion of the state x and possibly shared portions.

Process-specific state: The portion of the state x corresponding to a specific pro-
cess. This portion is updated by the update function of the corresponding
process, and only by that function. While the update function of a process
may modify only its own process-specific portion of the state (and shared por-
tions), it has read access to the entire state of the previous time step, including
the process-specific portions corresponding to other processes.

Shared state: A portion of the state x that can be updated by more than one
process. The update function of a specific process can optionally update any
portion of the shared state in addition to its own process-specific state.

User: The person using MP-Sim to construct a simulator and/or set up and run
simulations. “User-defined” refers to something that the user must implement
or define.

Trigger: To initiate the execution of the update function of a process. Each process
triggers at particular time steps within the simulation. For a process triggering
at time step t, it is the state at t − 1 and the input at t that are available as
inputs to the update and output functions of the process. Depending on the
duration of the process, it may “run” for more than one time step, in which
case the updated state values are not applied to the state until the time step
in which the process completes or finalizes.

Finalize: To complete the execution of the update function of a process. For a
previously triggered process that finalizes at time step t, the state updates
computed by the corresponding update function are applied at t, and therefore
only available as inputs to processes triggered at t+ 1 and beyond.

Shared state value: The value that is stored in the shared part of the state x.
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Shared state object: The object used to implement a shared state and manage
and update the corresponding shared state value contained in x.

Shared state update: A set of values and corresponding operations used by the
shared state object to update the current shared state value. To avoid over-
writing changes made by other processes to a shared state value, each process
computes an update consisting of a shared state update value along with the
operation used to apply it. All such updates are then applied together.

3.2 Model Overview

MP-Sim provides the framework for a user to construct a simulator and run simula-
tions consisting of a set of scheduled tasks or processes that run with a user-specified
frequency and duration. These processes operate on a state that is updated from
time step to time step as each simulation run proceeds. The processes can produce
output at each time step as well. The state x is updated by the update function,
denoted by f(·) and the output y is produced by the output function, denoted by
g(·). The processes and the simulator state are initialized when the simulator object
is instantiated.

xt = f t(xt�1, ut)xt�1

ut yt = gt(xt�1, ut)

previous state current state

outputinput

f t(·)

gt(·)

update function

output function

Figure 3-1: Simulator Update and Output Functions
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For a given time step t, Figure 3-1 illustrates a high-level view of the update and
output functions used to compute the state xt and output yt from the previous state
xt−1 and current input ut.

xt = f t(xt−1, ut) (3.1)

yt = gt(xt−1, ut) (3.2)

3.2.1 Partitioning by Process

The state x consists of two types of components, process-specific state updated only
by the corresponding process and shared state updated by more than one process.

xt = f t(xt�1, ut)xt�1

ut yt = gt(xt�1, ut)

previous state current state

outputinput

f t(·)

gt(·)

update function

process i

process j

output function


xt

i

�xt
s,i

�
= f t

i (x
t�1, ut)


xt

j

�xt
s,j

�
= f t

j (x
t�1, ut)

xt
s = f t

s (x
t�1
s ,�xt

s,i,�xt
s,j)

process i

process j

Figure 3-2: States and Update Functions Partitioned by Process

The overall update and output functions f(·) and g(·) are partitioned by process,
as is the process-specific portion of the state and the output y itself. For a simulator
with two process i and j, both of which execute in a single time step (no delay
between trigger and finalize), Figure 3-2 and Figure 3-3 illustrate the process-specific
update and output functions, respectively. Note that both processes can participate
in updating the shared state xts, by computing shared state updates, namely ∆xts,i
and ∆xts,j which are then applied together.
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xt = f t(xt�1, ut)xt�1

ut yt = gt(xt�1, ut)

previous state current state

outputinput

f t(·)

gt(·)

output function

process i

process j yt
j = gt

j(x
t�1, ut)

yt
i = gt

i(x
t�1, ut)

update function

Figure 3-3: Outputs and Output Functions Partitioned by Process

3.2.2 Process Timing

Each process triggers at specified time steps and then finalizes at later time steps
based on the duration of the execution of the process. The trigger time determines
what information is available as input to the process when it begins and the finalize
time determines when modifications to the state performed by the process are avail-
able to be seen by other processes. The timing of each process is controlled by the
following three parameters:

• the time t0 at which the process is first triggered,

• the time f between consecutive triggers of the process, controlling the frequency
with which the process executes, and

• the execution time τ that determines the amount of time between when the
process triggers and when it finalizes.10

Figures 3-2 and 3-3 assumed a simplified context in which all processes are final-
ized in the same time step in which they are triggered (i.e. τ = 0), which need not be

10Note that multiple executions of a process can overlap in time. That is, a second instance of a
process can be triggered before the first has completed and been finalized.
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xt�1

ut

previous state future state

future outputinput

xt+⌧

yt+⌧yt

xt

…

…

f t(·)

gt(·)

output function

process i
yt+⌧

i = gt
i(x

t�1, ut)

update function

process i


xt+⌧

i

�xt+⌧
s,i

�
= f t

i (x
t�1, ut)

Figure 3-4: Process with Run-time τ

the case. Figure 3-4 illustrates the general form of the update and output functions
for a process, where there is an arbitrary delay of τ time steps between when it is
triggered and when it is finalized. In this case, it is the state and output at time
t+ τ , rather than at t, that are affected by the process triggered at time t.

3.2.3 Simulation Runs and Inputs

It is often the case that we want to compare multiple runs of a simulation in which one
or more input parameters are being varied across the runs. MP-Sim is structured to
allow multiple simulation runs with their inputs and outputs to be organized together
in a simulation batch. This batch can be organized as a simple one-dimensional list
of runs, or more generally as a multi-dimensional collection of runs, where multiple
inputs are being varied and we want to simulate all combinations of the inputs.

Note that the only difference between the runs in a simulation batch is the set
of inputs used. Each run begins with the same initial state, determined at the time
the simulator object is instantiated.

Since many of the inputs for a simulation may be constant from run to run, or
even from time step to time step, MP-Sim provides mechanisms for constructing and
updating these portions of the input variable only as needed in order to make most
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efficient use of memory and computational resources. Depending on the context,
input data on disk can be loaded at each step as needed, or pre-loaded into memory
during initialization to speed up execution.

3.2.4 Output Post-Processing

Outputs can be written to disk during the simulation run or collected in memory to
be handled by post-run processing code. This post-run processing code is typically
used to generate summary reporting and visualizations of the simulation results.
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4 MP-Sim Reference

This section provides a reference to the various classes and functions included in
the MP-Sim framework, with details of the object properties, function and method
names, and input and output arguments.

4.1 Notational Conventions

Several notational conventions for variable, property, and field names are used through-
out the code and this manual and are summarized in Table 4-1.

4.2 MP-Sim Configuration – mpsim config

MP-Sim configuration consists of paths to base directories for input, output and tem-
porary work files, denoted by <INPUTDIR>, <OUTPUTDIR> and <WORKDIR>, respec-
tively. These are determined by the values of the inputdir, outputdir and workdir

variables in the mpsim config.m file found in <MPSIM>/lib. These are string value
variables containing the absolute or relative path to the corresponding directory. If
left blank, the default <INPUTDIR> points to <MPSIM>/sim data. Likewise, the de-
fault behavior for <OUTPUTDIR> and <WORKDIR> is to set each equal to <INPUTDIR>.

Upon installation of MP-Sim these values are all blank, but they can be changed
for a given MP-Sim installation by editing the appropriate lines in the mpsim config.m

file. The only lines that should be modified are those that define the inputdir,
outputdir and workdir variables. Note that this configuration affects all simulations
run by this installation of MP-Sim.

Within these base directories, which may or may not point to the same directory,
files are organized by simulation batch. For a simulation named <SIMNAME>, MP-Sim
will expect to find the input files in the simulation-specific directory for input files,
namely <INPUTDIR>/<SIMNAME>/inputs, which is also denoted by <SIMINPUTDIR>.
This path is passed to methods that need access to input files. Similarly, the simu-
lation writes any output files to <OUTPUTDIR>/<SIMNAME>/outputs, and any tem-
porary working files to <WORKDIR>/<SIMNAME>/work, denoted <SIMOUTPUTDIR>

and <SIMWORKDIR>, respectively. These paths are likewise passed to methods that
need access to the corresponding files. This design keeps all data files for a given
simulation batch together under a directory whose name is the simulation name.
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Table 4-1: Notational Conventions

name description

Values
<INPUTDIR>† path to base directory for input files
<OUTPUTDIR>† path to base directory for output files
<WORKDIR>† path to base directory for temporary work files
<SIMNAME> simulation name used to address input, output and temporary work

files
<SIMINPUTDIR> path to simulation-specific directory for input files, constructed as

<INPUTDIR>/<SIMNAME>/inputs

<SIMOUTPUTDIR> path to simulation-specific directory for output files, constructed as
<OUTPUTDIR>/<SIMNAME>/outputs

<SIMWORKDIR> path to simulation-specific directory for temporary work files, con-
structed as <WORKDIR>/<SIMNAME>/work

Variable, Property and Field Names
sim simulator object
sim name, sim.name simulation name <SIMNAME>

sim inputdir path to simulation-specific input directory <SIMINPUTDIR>

sim outputdir path to simulation-specific output directory <SIMOUTPUTDIR>

sim workdir path to simulation-specific work directory <SIMWORKDIR>

r index(es) of current run, 1-D cell array of scalars
t index of current simulation time step
idx index of process update (trigger or finalize) instance
x simulator state, x, see Section 4.3
u current input struct, ut, see Section 4.4
y struct of all outputs, y, see Section 4.5
ps process object
ps name, ps.name name of process object
x ps process-specific portion of simulator state, xi
y ps process-specific output, yi
sx shared state object
sx name, sx.name name of shared state object
sx update shared state update for a single shared state object, struct array with

fields 'op' and 'val'
sx updates struct of shared state updates for multiple shared state objects, with

each update in a field named according the corresponding shared state
name

† Specified in the mpsim config.m file found in <MPSIM>/lib, and set to '<MPSIM>/sim data' by default.

4.3 Structure of Simulator State x

The simulator state x, as described in Section 3.2.1, is partitioned into two parts,
the shared part and the process-specific part. It is implemented as a struct x with

19



the shared part contained in the shared field and the process-specific part contained
in fields named according to name of the corresponding process object. The shared

field is also a struct whose field names correspond to the names of the various shared
state objects. This structure is summarized in Table 4-2.

Table 4-2: Structure of Simulator State x

name description

x full simulator state struct
.(ps name) struct containing arbitrary fields defined by process object identified by name

ps name

.shared struct of shared state fields
.(sx name) struct containing arbitrary fields defined by shared state object identified by

name sx name

For example, suppose a process named 'foo' defines its process specific state as
a struct with a field named 'bar'. Then the value of this piece of the state would be
found in x.foo.bar. Similarly, if a shared state object named 'baz' defined a field
named 'buz', the value of that piece of the state would be found in x.shared.baz.buz.

Note that it is only the shared state value that is contained in the shared portion
of the state x, not the shared state object used to manage and update it.

4.4 Structure of Simulator Input u

The input u, also illustrated in Section 3.2.1, is an arbitrary user-defined value. More
specifically, ut is an arbitrary user-defined set of information made available to the
simulator at time step t. It is assembled at each time step from multiple sources,
including collections of data loaded at the beginning of the simulation batch, at
the beginning of the current simulation run, and at the current time step. Each of
these 3 collections of data can consist of a global portion associated with the overall
simulation as well as portions associated with specific processes triggered at time t..

The user does not define the input ut directly, but indirectly, by implementing
simulator and simulator process methods11 to handle the various preloading and
loading options. MP-Sim then assembles ut automatically from the collections of
data provided by these methods. Table 4-3 describes the various variables that are
defined and returned by these methods.

11Namely preload sim inputs, preload run inputs and load current inputs. See Sec-
tions 4.6.2 and 4.8.2 for details.
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Table 4-3: Return Arguments for Input Loading Methods*

name description

thissim struct of input data pre-loaded at beginning of simulation batch
thisrun struct of input data pre-loaded at beginning of simulation run
thisidx struct of input data loaded at current time step
byrun struct array of input data pre-loaded at beginning of simulation

batch, indexed by run
byt struct array of input data pre-loaded at beginning of simulation

batch or run, indexed by time index t

byidx struct array of input data pre-loaded at beginning of simulation
batch or run, indexed by process update instance idx

byboth struct array of input data pre-loaded at beginning of simulation
batch, indexed by both run r and time step t, or by both run r and
process update instance idx†

The input struct u, as passed to the ps.update() functions, includes data loaded by these
methods*. That is, all fields from the following return args of these methods are copied into
input struct u:
thissim

thisrun

thisidx

byrun(r{:}) for current simulation run r

byt(t) for current time step t

byidx(idx) for current process update instance idx

byboth(r{:},t) for current simulation run r and time step t, or
byboth(r{:},idx) for current simulation run r and process update instance idx

* Namely the preload sim inputs, preload run inputs and load current inputs methods of the simulator and
process classes.

† Depending on whether it is returned by a simulator method or a process method.

This design helps to prevent the user from accidentally providing a process with
information that should not be available at the current time step. The key detail
to keep in mind when implementing these methods is that the fields in the provided
data are simply copied to u when it is assembled, so each type of information should
use a unique field name to avoid data getting inadvertently clobbered.

4.5 Structure of Simulator Output y

At each time step the simulator may produce an output y, or more precisely yt. Some
portion of these outputs may be written to output files directly by the output method
of a process while other portions are collected in memory inside the simulator object
for post-processing (e.g. saving, printing, plotting) by a post run method. This
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output is stored in sim.y as follows, where r is the index of the run and idx is the
index of the process update instance.

Table 4-4: Structure of Simulator Output Struct

name description

y full simulator output struct
.(ps name)(r{:}, idx) struct containing arbitrary fields defined by process output meth-

ods, identified by corresponding process name ps name and in-
dexed by the current run r and process update instance idx

4.6 Simulator Class – mpsim

The mpsim class serves as the abstract base class for all simulator objects and pro-
vides the top-level interface to the user for running simulations. The properties and
methods are listed in Tables 4-5 and 4-6. Further detail is provided in the following
two sections for the public methods and for the private methods that are intended
to be implemented or overridden by a subclass.

4.6.1 Public Methods

mpsim This is the constructor for the simulator object and is always called indirectly
by the constructor of the subclass, never directly by the user. It takes no input
arguments. After initializing configuration information via mpsim config it calls the
initialize method.

sim = mpsim()

Subclasses of mpsim will typically override the initialize method, but inherit the
constructor itself without modification.

add shared state Adds the specified shared state object sx to the simulator.

sim = sim.add_shared_state(sx)
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Table 4-5: Properties of mpsim

name description

Public Properties
l length of simulation time step*

units string value of units of l, for user reference only (e.g. 'minutes' or
'hours')

name name of current simulation batch <SIMNAME>, used to construct paths
to directories with simulation data

processes cell array of process objects registered with simulator
R scalar or vector of dimension of runs in current simulation batch
T number of simulation time steps per run in current simulation batch
r index(es) of current run, 1-D cell array of scalars
t index of current simulation time step
x simulator state x, with process-specific portions in x.(ps name) and

shared portions in x.shared.(sx name), see Section 4.3
y struct containing outputs generated during simulation, see Section 4.5
verbose (0–3), option specifying level of detailed progress to be printed to screen

during a simulation run (default = 0, i.e. no output)
inspect (0, 1), option to automatically enter debugger at end of input method

to allow user to inspect the input struct (default = 0)
post run on (0, 1) option controlling whether or not post run method is executed

(default = 1)
options struct containing custom options passed to run; includes all options

passed except the standard R, T, verbose, inspect and post run on

which are modified directly in the corresponding sim properties

Private Properties
config struct of paths to base directories for input, output and temporary work

files in fields inputdir, outputdir and workdir, respectively, as speci-
fied in mp sim config

out args current set of arguments, as provided by ps.update(), to be passed to
sim.output()

shared x objects struct of shared state objects used to update shared portion of state x,
fields named according to name of corresponding shared state object†

shared x names cell array of names of shared state fields/objects
u preloaded struct containing inputs pre-loaded at beginning of simulation batch or

current run‡

x0 copy of initial simulator state x made before first run
x updates updates to simulator state to be applied when processes finalize

* The values of ps.f, ps.t0, and ps.tau, for all processes ps, must be evenly divisible by sim.l.
† Object at sim.shared x objects.(sx name) is used to update shared state value at sim.x.shared.(sx name).
‡ Pre-loaded inputs are defined by the preload sim inputs and preload run inputs methods of the simulator

and/or process objects.
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Table 4-6: Methods of mpsim

name description

Public Methods
mpsim simulator object constructor (called indirectly by subclass)
add shared state add a shared state object and its initial value to the simulator
display display information about simulation properties and processes
register process register a process with the simulator
reset set time index t to 1, reset simulator state to initial value
run execute specified runs of the simulation

Private Methods – override as needed
initialize set default simulator properties, create & add any shared states,

create & register processes
load current inputs load inputs for current time step
preload run inputs pre-load inputs at beginning of each simulation run
preload sim inputs pre-load inputs at beginning of simulation
post run post-process simulation outputs

Private Methods – should not need to override
apply ps x apply queued update to process-specific state
apply run options copy set of run options to simulator object
apply shared x apply queued update for given process to shared state
increment run increment simulation run counter in sim.r

initialize output initialize the output cache in sim.y

input construct input struct u for current run and time step
inputdir return path to a simulation-specific input file or directory
output collect output from finalizing processes that provide it
outputdir return path to a simulation-specific output file or directory
preload all run inputs cache results of preload run inputs for simulator and processes
preload all sim inputs cache results of preload sim inputs for simulator and processes
queue out args push arguments to pass from ps.update() to ps.output() to

corresponding FIFO queue
queue ps x push updated process-specific state to corresponding FIFO queue
queue shared x push shared state updates to corresponding FIFO queue
step update state for finalizing processes and increment time step
update call ps.update() for processes triggered at current time step
workdir return path to a simulation-specific work file or directory

24



display Displays the details of the simulator object, including its properties and
processes. Automatically called to display the object when a simulator object is
the result of a statement (e.g. on the command-line) that is not terminated with a
semicolon.

sim.display()

sim

register process Checks compatibility of the process and simulator timing pa-
rameters, initializes the private data structures for tracking state updates and output
arguments for the process, and registers the process object ps with the simulator.

sim = sim.register_process(ps)

reset Sets the time index sim.t back to 1 and resets the simulator state to the
initial value, including the values of all shared state objects. Called before the start
of each new run.

sim = sim.reset()

run Executes the specified runs of the simulation using the input, output and work
directories and files corresponding to the simulation batch indicated by sim name,
and the specified MP-Sim options.

sim = sim.run(sim_name, opt_struct)

sim = sim.run(sim_name, opt1_name, opt1_val, ...)

sim = sim.run(sim_name, opt1_name, opt1_val, ... opt_struct)

If the 'r' option is not specified, it executes all runs specified by the R attribute of
the simulation, which can be set at run time by the 'R' option.

MP-Sim options can be specified as a struct (opt struct) or a set of name/value
pairs (opt1 name, opt1 val, etc) or a combination of both. Table 4-7 lists the stan-
dard options that are available in the corresponding public attributes of the simu-
lator object. All other options are considered custom options and are available in
sim.options.
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Table 4-7: MP-Sim Run Options

name default description

'verbose' 0 integer from 0 to 4 specifying the level of detail of progress output printed
during the simulation

'inspect' 0 1 to pause simulation at each step after construction of the input data u

to allow inspection
'r' all index(es) of single simulation run to execute (cell array)
'R' sim.R scalar or vector of dimension of runs to execute
'T' sim.T number of simulation time steps per run to execute

4.6.2 Private Methods – override as needed

initialize Sets the default values for the simulator properties l, units, R and
T, creates and add any shared states, then creates and registers the process objects.
This method must be implemented in your mpsim subclass.

sim = sim.initialize()

load current inputs Called at each time period to load inputs that are not
process-specific (particularly in terms of timing). Returns an empty value by default,
but can be overridden by the user to load data for run r and time t specific to their
simulation.

thisidx = sim.load_current_inputs(sim_name, sim_inputdir, r, t)

The input struct u, as passed to the ps.update() functions, includes the data
loaded by this method at each time step. That is, in addition to data from other
sources, all fields from thisidx are copied into input struct u. See Table 4-3 for
details on the return argument.

preload run inputs Called at the beginning of each simulation run to pre-load
inputs that are not process-specific (particularly in terms of timing). Returns empty
values by default, but can be overridden by the user to load data for run r specific
to their simulation.

[thisrun, byt] = sim.preload_run_inputs(sim_name, sim_inputdir, r)

The input struct u, as passed to the ps.update() functions, includes data pre-
loaded by this method at the beginning of each simulation run. That is, in addition to
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data from other sources, all fields from thisrun and byt(t) (for the current time step
t) are copied into input struct u. See Table 4-3 for details on the return arguments.

preload sim inputs Called at the beginning of a simulation batch to pre-load
inputs that are not process-specific (particularly in terms of timing). Returns empty
values by default, but can be overridden by the user to load data specific to their
simulation.

[thissim, byrun, byt, byboth] = ...

sim.preload_sim_inputs(sim_name, sim_inputdir)

The input struct u, as passed to the ps.update() functions, includes data pre-
loaded by this method at the beginning of the simulation. That is, in addition to data
from other sources, all fields from thissim, byrun(r{:}), byt(t), and byboth(r{:},t)

(for the current run r and time step t) are copied into input struct u. See Table 4-3
for details on the return arguments.

post run Simulation outputs are returned by the various process output methods
during the execution of the simulation batch and collected in an output struct y,
described in Table 4-4. This method is called after the execution of all runs is
complete.12 Does nothing by default, but can be overridden by the user to post-
process the outputs y specific to their simulation.

sim.post_run(y, sim_outputdir)

4.7 Shared State Class – mpsim shared x

The mpsim shared x class serves as the abstract base class for all shared state objects.
The properties and methods are listed in Tables 4-8 and 4-9. Further detail is
provided in the following two sections for the public methods and for the private
methods that are intended to be implemented or overridden by a subclass.

The shared state mechanism in MP-Sim involves three types of data. The
first is the shared state value found directly in the simulator state, that is, in
sim.x.shared.(sx name). These values are available directly to the process update

and output methods as read-only values. On the other hand, each of these values
is updated only indirectly, by the corresponding shared state object. In particular, a
process update method may return a set of shared state updates (sx updates) that are

12Unless the 'post run on' option is set to 0.
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Table 4-8: Properties of mpsim shared x

name description

Public Properties
name name of shared state object (typically denoted sx name)

Private Properties
initial value starting value for the shared state at beginning of simulation batch, specified

by initialize method†

value current value of the shared state, type is determined by the initialize

method, and value is updated by the update method

† By convention, the initialize method is designed to load the data for the initial value from a file, located in
<SIMINPUTDIR>/shared states, with the same name as the shared state object.

Table 4-9: Methods of mpsim shared x

name description

Public Methods
mpsim shared x shared state object constructor (called indirectly by subclass)

Private Methods – override as needed
initialize initialize value of shared state
update update value of shared state based on the

automatically applied to the state at the proper time via the update method of the
corresponding shared state object. These shared state updates consist of an update
value and an operation used to apply that value, for instance, adding or subtracting
a value to an inventory, or pushing or popping a value from a queue.

4.7.1 Public Method

mpsim shared x This is the constructor for shared state objects and is always
called indirectly by the constructor of the subclass, never directly by the user. The
only input is the name of the shared state object sx name.

sx = mpsim_shared_x(sx_name)

4.7.2 Private Methods – override as needed

initialize This method is responsible for setting the initial value of the shared
state and must be implemented in your mpsim shared x subclass.
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starting_value = sx.initialize(sim_inputdir, sim_name)

By convention, the initialize method is designed to load the data for the initial
value from a file, located in <SIMINPUTDIR>/shared states, with the same name as
the shared state object.

update This method is responsible for applying a shared state update (sx update)
to the value of the shared state and must be implemented in your mpsim shared x

subclass.

sx.update(sx_update)

The shared state update sx update is a 1-dimensional struct array with fields
'op' and 'val', containing the operation and value, respectively to be applied. If
sx update has more than one element, update should apply each of them in order.

4.7.3 Subclasses – mpsim shared x numeric, mpsim shared x queue

mpsim shared x numeric This subclass of mpsim shared x implements a shared
state whose value is a numerical scalar or array. The initialize method uses the
built-in load function to load the initial value of the shared state from a text file,
located in <SIMINPUTDIR>/shared states, with the same name as the shared state
object and with a '.txt' extension. For example, a shared state object named
'inventory' would load its initial value from <SIMINPUTDIR>/shared states/inventory.txt.

Table 4-10: Update Operations (sx update.op) for
mpsim shared x numeric

operation description

'+' add update value to current value
'-' subtract update value from current value
'*' multipy current value by update value (matrix multiply)
'/' divide current value by update value (matrix divide)
'^' raise current value to power of update value (matrix exponent)
'.*' multipy current value by update value (elementwise)
'./' divide current value by update value (elementwise)
'.^' raise current value to power of update value (elementwise)
'=' replace current value with update value
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The valid update operations are shown in Table 4-10. So, for example, if the
input text file contains a simple scalar, the following defines an update of length 2
that specifies an increment of the current value by 43, followed by doubling it.

sx_update = struct('op', {'+', '*'}, 'val', {43, 2});

The mpsim shared x numeric class can typically be used without any further sub-
classing.

mpsim shared x queue This subclass of mpsim shared x implements a shared state
whose value is a FIFO queue of arbitrary data. Due to the potentially arbitrary na-
ture of the data in the initial queue, the initialize method calls a function that
returns the initial value of the shared state. The function is located in an M-file in
<SIMINPUTDIR>/shared states with the same name as the shared state object. For
example, a shared state object named 'test queue' would load its initial value using
the test queue function found in <SIMINPUTDIR>/shared states/test queue.m.

Table 4-11: Update Operations (sx update.op) for mpsim shared x queue

operation description

'+' push update values to the queue, update values can be scalar or cell array
'-' pop values from the queue, where update value gives number of elements to pop

The valid update operations are shown in Table 4-11. So, the following defines
an update of length 1 that specifies pushing two elements to the queue: the matrix
[1 2; 3 4], then the string 'Hello FIFO!'.

sx_update = struct('op', '+', 'val', {{[1 2; 3 4], 'Hello FIFO!'}});

The mpsim shared x queue class can typically be used without any further subclass-
ing.

4.8 Simulator Process Class – mpsim process

The mpsim process class serves as the abstract base class for all process objects, which
define the basic tasks and behaviors performed by the simulator. The properties and
methods are listed in Tables 4-12 and 4-13. The parameters, t0, f and τ , discussed
in Section 3.2.2, are properties of the process object and define the timing of the
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triggering and finalizing of the process. In summary, the process triggers at time
step (t0 + fi)/l and finalizes at (t0 + τ + fi)/l, for i = 1, 2, . . . nidx, where l is the
length of the simulation time step (sim.l).

Further detail is provided in the following two sections for the public methods
and for the private methods that are intended to be implemented or overridden by
a subclass.

Table 4-12: Properties of mpsim process

name description

Public Properties
name name of process
f f , amount of time between instances of process update†

t0 t0, time at which first process update instance is triggered†

tau τ , length of process run time, or amount of time from trigger to corresponding
finalize†

Private Properties

f period f̂ = f/l, number of time steps between instances of process update‡

t0 period t̂0 = t0/l, index of time step in which first process update instance is triggered‡

tau period τ̂ = τ/l, length of process run time, or number of time steps from trigger to
corresponding finalize‡

† Expressed in same units as simulation time step length l sim.l, of which it must also be an integer multiple.
‡ Same as ps.f, ps.t0 or ps.tau, respectively, but in units of simulation time steps.

4.8.1 Public Methods

mpsim process This is the constructor for process objects and is always called
indirectly by the constructor of the subclass, never directly by the user. It takes a
struct s with fields 'name', 'f', 't0' and 'tau' (all required) as an input.

ps = mpsim_process(s)

The process objects are typically instantiated and registered in the initialize

method of the simulator object.

display Displays the details of the process object. Automatically called to display
the object when a process object is the result of a statement (e.g. on the command-
line) that is not terminated with a semicolon.

ps.display()

ps
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Table 4-13: Methods of mpsim process

name description

Public Methods
mpsim process process object constructor (called indirectly by subclass)
display display the process object
idx2t convert the index of a process update instance to the time step in

which it is triggered or finalized
t2idx convert a simulation time index into the index of the process update

instance triggered or finalized at that time

Private Methods – override as needed
initialize set initial value for process-specific state
load current inputs load inputs for current process update instance
preload run inputs pre-load inputs at beginning of each simulation run
preload sim inputs pre-load inputs at beginning of simulation
input modify or update input struct ut (u)
output implement process output function gi(x, u), create process outputs
print finalize print custom output upon process finalize
print trigger print custom output upon process trigger
update implement process update function fi(x, u) to update process-specific

and shared state

Private Methods – should not need to override
finalize return index of process update instance if process finalizes in current

period, 0 otherwise
set period check timing parameters and convert units to time steps
trigger return index of process update instance if process triggers in current

period, 0 otherwise

idx2t Given the index idx of a process update instance, this method returns the
simulation time step t in which the process triggers ('T') or finalizes ('F'), depending
on the value of the second input argument.

t = ps.idx2t(idx, 'F')

t = ps.idx2t(idx, 'T')

t2idx Given a simulation time step t, this method returns the index idx of the
process update instance that triggers ('T') or finalizes ('F') at time t, depending on
the value of the second input argument. The third argument determines the handling
of the case when the process does not trigger/finalize at time t. By default (mode = 0),
it returns idx = 0 in that case. If mode = 1, it returns the idx corresponding to the
most recent period preceding t in which the process triggered/finalized. If mode = 2,
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it returns idx as a non-integer value.

idx = ps.t2idx(t, 'F')

idx = ps.t2idx(t, 'T')

idx = ps.t2idx(t, 'F', mode)

idx = ps.t2idx(t, 'T', mode)

4.8.2 Private Methods – override as needed

initialize This method is responsible for setting the initial value of the process-
specific state and must be implemented in your mpsim process subclass, unless it
has no process-specific state. The return argument defines both the structure of this
portion of the state and the initial value to be used for all runs. Input arguments
are the simluator state13 and the path <SIMINPUTDIR> to the simulation inputs.

x_ps = ps.initialize(x, sim_inputdir)

load current inputs Called at each process trigger to load inputs that are process-
specific (particularly in terms of timing). Returns an empty value by default, but
can be overridden by the user to load data for run r and process update instance idx

specific to their simulation. Arguments R and nidx are the vector of dimensions of
the batch of simulation runs and the total number of process update instances per
run, respectively.

thisidx = ps.load_current_inputs(sim_name, sim_inputdir, R, nidx, r, idx)

The input struct u, as passed to the ps.update() functions, includes the data
loaded by this method at each process trigger. That is, in addition to data from
other sources, all fields from thisidx are copied into input struct u. See Table 4-3
for details on the return argument.

preload run inputs Called at the beginning of each simulation run to pre-load
inputs that are process-specific (particularly in terms of timing). Returns empty
values by default, but can be overridden by the user to load data for run r specific
to their simulation. Arguments R and nidx are the vector of dimensions of the
batch of simulation runs and the total number of process update instances per run,
respectively.

13During the initialization process, it must be assumed that the simulator state has not yet been
fully constructed.
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[thisrun, byidx] = ps.preload_run_inputs(sim_name, sim_inputdir, R, nidx, r)

The input struct u, as passed to the ps.update() functions, includes data pre-
loaded by this method at the beginning of each simulation run. That is, in addition
to data from other sources, all fields from thisrun and byidx(idx) (for the current
process index idx) are copied into input struct u. See Table 4-3 for details on the
return arguments.

preload sim inputs Called at the beginning of a simulation batch to pre-load in-
puts that are process-specific (particularly in terms of timing). Returns empty values
by default, but can be overridden by the user to load data specific to their simulation.
Arguments R and nidx are the vector of dimensions of the batch of simulation runs
and the total number of process update instances per run, respectively.

[thissim, byrun, byidx, byboth] = ...

ps.preload_sim_inputs(sim_name, sim_inputdir, R, nidx)

The input struct u, as passed to the ps.update() functions, includes data pre-
loaded by this method at the beginning of the simulation. That is, in addition
to data from other sources, all fields from thissim, byrun(r{:}), byidx(idx), and
byboth(r{:},idx) (for the current run r and process index idx) are copied into input
struct u. See Table 4-3 for details on the return arguments.

input Perform any final modifications to the input struct u before passing it to
the update functions.

u = ps.input(u, sim_inputdir, r, idx)

output Implements the process output function gi(x, u). Creates the outputs for
a particular update instance of the process upon finalization. This method can save
files to the <SIMOUTPUTDIR>, print output to the console or return output values
y ps to be cached by the simulator for post-processing by its post run method.

This method is called without input arguments during simulation initialization to
determine whether the process returns outputs for post-processing. In this context it
should return an empty matrix if it will not be returning output for post-processing.
Otherwise, it should return a non-empty scalar, if it’s output will be a simple scalar,
or if it will be a struct, then it should return a struct with the same fields that will
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be returned during the simulation. These values are stored in the simulator output
struct at sim.y.(ps.name)(r:, idx) as described in Section 4.5.

Input arguments include the simulator state x, the current input struct u, the
simulation name sim name, the simulation output directory sim outputdir, the run
index r, the process update (finalize) index idx and any additional arguments passed
from the corresponding ps.update() call, namely out args.

y_ps = ps.output(x, u, sim_name, sim_outputdir, r, idx, out_args)

print finalize Prints custom output upon process finalize.

ps.print_finalize(x, y, r, t, idx)

print trigger Prints custom output upon process trigger.

ps.print_trigger(x, y, r, t, idx)

update Implements the process update function fi(x, u). Called with the current
state x and current input u when the process is triggered, to compute updates to
the process-specific and shared state. These updates are applied to the state when
the corresponding update instance finalizes. It can also use out args to pass along
arbitrary data to the corresponding output function. Details of the input and output
arguments are given in Table 4-14.

This method must be implemented in your mpsim process subclass.

[x_ps, sx_updates, out_args] = ...

ps.update(x, u, sim_name, sim_workdir, r, idx)
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Table 4-14: Input and Output Arguments for update Method

name description

Inputs
x simulator state x
u simulator input u
sim name simulation name, <SIMNAME>

sim workdir simulation work directory
r index(es) of current run, 1-D cell array of scalars
idx index of process update (trigger or finalize) instance

Outputs
x ps updated value of process-specific state
sx updates struct of shared state updates for multiple shared state objects, with each

update in a field named according the corresponding shared state name
out args arguments to be passed to corresponding output method
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5 Example Simulation

This section describes a toy example simulation used in this manual and in the
MP-Sim tests to provide a concrete illustration of the concepts and implementation
details for an example simulator based on MP-Sim. This example scenario is that
of a greatly over-simplified burger shop with four separate processes for ordering,
delivery, defrosting and grilling, respectively, running on an hourly time step for 3
weeks. To keep things small and simple, these are 3-day weeks with 6-hour days.

The simulation name used for this example is burger shop example, and the data
can be found in <MPSIM>/sim data. The code to implement the burger shop simu-
lator is found in <MPSIM>/lib/t.14

5.1 State

As is typical, the state in this example includes both process-specific and shared
portions. The process-specific portions contain the cumulative count of burgers that
have been ordered, delivered, defrosted and grilled, respectively.15 The shared state,
on the other hand, consists of inventories of frozen, thawed and grilled burgers as
well as an order queue.

5.2 Input Data

The number of burgers to be ordered, delivered, defrosted and grilled at each hour is
given as input data. These data are assumed to be provided based on some external
forecasts. The input for the simulation also includes the number of burgers actually
sold.

5.3 Processes

The grilling process is set to run once an hour, taking the decision of the number of
patties to grill directly from the input data, and subtracting that amount from the
defrosted inventory and adding it to the grilled inventory. The grilled inventory is
also decremented by the number of patties sold.

14The classes include all those whose names begin with 'bg ', and of course the burger shop

class itself.
15It turns out that, for this simple example simulation, these cumulative counts could be computed

from outputs, and therefore need not actually be part of the state of the burger shop, which is
adequately captured by the inventories and order queue. They have been included here simply to
illustrate the process-specific state.
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Similarly, the defrosting process runs every 3 hours, taking one hour to complete.
It also receives the number of patties to defrost from the input data and subtracts
that amount from the frozen inventory and adds it to the defrosted inventory.

The delivery process runs once per day, or every 6 hours, starting on the second
hour of the day and completing on the third. The amount to be delivered is taken
from the top of the order queue and added to the frozen inventory.

The order process runs once a week and pushes three new daily orders to the end
of the order queue. The amounts for these orders are also read directly from input
data.

Notice that the grilling process is able to actually do more than one task, grilling
and sales, since they both occur hourly. These could have been implemented as
separate processes, but are kept together here for simplicity. This is a design decision
for the one implementing the simulation. On the other hand, since ordering and
delivery, for example, do not occur on the same schedule, it is not possible to combine
them into a single task.

5.4 Output

The output of the burger shop simulation consists of essentially two components.
First, the number of burgers ordered, delivered, defrosted grilled and sold at each
hour, along with the hourly inventory levels, is printed to the screen. And, second, the
same data is saved to a MAT-file in the <OUTPUTDIR>/burger shop example/outputs

directory.

5.5 Structure of Runs

The simulation is set up to run with an hourly time step for 3 weeks, with a 6-hour
day and a 3-day week. Demand for burgers follows a cyclical pattern, with the peak
occuring in the middle of each day, with a higher demand in the middle of the week
as well. Inputs are provided for two separate runs, one in which the number sold is
roughly as forecasted, and another in which there is an unexpectedly high demand
for burgers.
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6 Creating Your Own Simulation

This section will describe the steps required to design and implement your own sim-
ulation. It will use the burger shop example from the previous chapter to illustrate.

6.1 Primary Design Questions

There are five primary questions that need to be answered during the design of any
MP-Sim simulation.

6.1.1 What information is included in the state?

One way to discern what belongs in the simulator state is to ask what is the minimal
set of information needed to summarize the effects of all past action and define a
starting condition from which to simulate your environment going forward. If a piece
of information is not needed to simulate the future, it does not need to be in the
state. If it is not a result of past action, it does not need to be in the state.

The decision of where in the state a particular piece of information belongs, on the
other hand, is determined as the simulation is partitioned into its various processes.

6.1.2 What are the processes that act on the state?

This question can be answered by listing the various tasks or actions that are per-
formed by the simulation and separating them by timing or scheduling into groups
of tasks that always occur together. Each of these groups could be assigned to its
own process. In some contexts it may be conceptually advantageous to further split
these groups into logical sub-groups of tasks, each assigned to its own process, but
that is a matter of preference.

Once the tasks are grouped into processes it becomes apparent which pieces of
information in the state are acted upon by which processes. Portions of the state that
are modified or updated by a single process belong in the process-specific portion
of the state. State information that is modified by more than one process must be
implemented as shared state.

6.1.3 What information becomes available to the simulation as it pro-
ceeds?

This is external information that is made available to the simulation at a specified
time. If a piece of information depends on past simulator action, then it belongs in
the state, not in the input.
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6.1.4 What results does the simulation produce?

The behavior of the simulation is only available to the user through the output that
it produces. This can be in the form of infomration printed to the screen during
or after the execution of the simulation, or data or visualization files saved in the
<SIMOUTPUTDIR> directory.

6.1.5 How many runs are needed and how do they relate to one another?

It is often the case that a simulation is run multiple times with results averaged or
summed across the runs or comparisons made between different runs. Keep in mind
that the only difference between the runs is in the input data used, since the initial
state is shared among all runs. Multiple runs may be arranged as a simple list or as
a multi-dimensional array of runs. For example, suppose you wanted to simulate 3
variations for each of 4 scenarios, each with and without a particular feature enabled.
That would result in a 3-dimensional set of runs consisting of a total of 24 (3×4×2)
runs.

6.2 Implementation

With the above design questions answered, implementation begins by creating a
subclass of mpsim as the top-level simulator, and subclasses of mpsim process for
each of the processes. Each shared state object is implemented as subclass of
mpsim shared x or by using one of the provided subclasses mpsim shared x numeric

or mpsim shared x queue.
The code for the implementation of the burger shop example described in this

section can be found in <MPSIM>/lib/t in the following classes:

• @burger shop

• @bg defrost

• @bg deliver

• @bg grill

• @bg order

Likewise, the input data files for the 'burger shop example' can be found in
<MPSIM>/sim data/burger shop example in the files:16

• defrost-base-run-1.txt

16The 'burger shop example' simulation includes data for both the single-dimensional burger
shop example (@burger shop) and the 2-dimensional version (@burger shop 2d).
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• defrost-growth-run-1.txt

• grill-run-1.txt

• order base run.m

• order growth run.m

• shared states/frozen inventory.txt

• shared states/grilled inventory.txt

• shared states/thawed inventory.txt

6.2.1 Simulator Class

It is the simulator class that defines the overall structure of the simulation, including
its processes and state. This is a user-defined class that inherits from mpsim17 and
overrides the initialize method. In the burger shop example, this is the class named
burger shop. The initialize method is responsible for three things.

1. Specify the length (l) and units (units) of the simulation time step, the number
of time steps (T), and the structure of the simulation runs (R).

2. Create and add any shared state objects. The shared state class is responsible
to initialize the value of its shared state objects.

3. Create and register the process objects. The timing characteristics of each
process are contained in the parameters used to instantiate the process object
here. The process class takes care of initializing its own process-specific state.

The following is the definition of the burger shop class with its initialize

method, defining the 2 runs of 54 one-hour periods, adding the order queue and
the 3 inventories, and finally registering the 4 processes described in Section 5.3.

17See Section 4.6 for more details.
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classdef burger_shop < mpsim

properties

end

methods

function initialize(sim)

%% set default values for simulator properties

sim.l = 1; %% l, length of simulation time step

sim.units = 'hours'; %% units of l, length of time step

sim.T = 6*3*3; %% T, number of simulation periods per run

sim.R = 2; %% R, dimension(s) of simulation runs

%% create and add shared state objects

sim.add_shared_state(mpsim_shared_x_queue('order_queue'));

sim.add_shared_state(mpsim_shared_x_numeric('frozen_inventory'));

sim.add_shared_state(mpsim_shared_x_numeric('thawed_inventory'));

sim.add_shared_state(mpsim_shared_x_numeric('grilled_inventory'));

%% create and register process objects

sim.register_process(bg_order(...

struct( 'name', 'order', ...

'f', 6*3, ...

't0', 1, ...

'tau', 0) ));

sim.register_process(bg_deliver(...

struct( 'name', 'deliver', ...

'f', 6 , ...

't0', 2, ...

'tau', 1) ));

sim.register_process(bg_defrost(...

struct( 'name', 'defrost', ...

'f', 2, ...

't0', 1, ...

'tau', 1) ));

sim.register_process(bg_grill(...

struct( 'name', 'grill', ...

'f', 1, ...

't0', 1, ...

'tau', 0) ));

end

end

end
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6.2.2 Shared State Classes

The burger shop requires several inventories and a delivery queue, which are defined
as shared states of the simulator. MP-Sim includes classes for two types of shared
state objects, a simple numeric state (mpsim shared x numeric), which is used for
the inventories, and a FIFO queue of arbitrary data types (mpsim shared x queue),
which is used for the order queue.

Shared state objects initialize their own values when a simulation begins, by
convention, from an input file located in <SIMINPUTDIR>/shared states with the
same name as the shared state object. For example, the 'thawed inventory' shared
state object is of the class mpsim shared x numeric, and its initial value is found in
<INPUTDIR>/burger shop example/inputs/shared states/thawed inventory.txt

sim.add_shared_state(mpsim_shared_x_numeric('thawed_inventory'));

The value of a shared state object is not manipulated directly by a process to
avoid modifying the value observed by subsequent process updates in the same time
step. Instead, to modify a shared state, a shared state update, generated by the
update method of a process, is applied to the shared state value together with other
updates when the process finalizes. This update value is applied automatically by
the update method of the shared state object.

For example, in the update method of the 'defrost' process, the defrosted
amount is subtracted from the 'frozen inventory' and added to the 'thawed inventory'
by defining a set of shared state updates (sx updates) as follows.

sx_updates = struct( ...

'frozen_inventory', struct('op', '-', 'val', defrosts), ...

'thawed_inventory', struct('op', '+', 'val', defrosts) );

6.2.3 Simulator Process Classes

The majority of the action happens in the implementation of the various process
classes, each of which is a subclass of mpsim process. The subclass for a process,
such as 'defrost', typically inherits explicitly the constructor of its parent class.
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classdef bg_defrost < mpsim_process

properties

end

methods

function obj = bg_defrost(s)

obj@mpsim_process(s);

end

end

end

This constructor, as called from the initialize method of the burger shop simulator,
sets the name of the process ('defrost') and the timing parameters, in this case to
run every 2 hours ('f'), starting at hour 1 ('t0'), where each defrost operation takes
1 hour complete ('tau').18

sim.register_process(bg_defrost(...

struct( 'name', 'defrost', ...

'f', 2, ...

't0', 1, ...

'tau', 1) ));

Furthermore, each process must also implement the update() method correspond-
ing to f t

i (·) as described in Section 3.2. An example from the 'defrost' process
illustrates.

function [x_ps, sx_updates, out_args] = ...

update(ps, x, u, sim_name, sim_workdir, r, idx)

%UPDATE @bg_defrost/update

%% number to defrost is min of input value and current frozen inventory

defrosts = u.defrosts;

if x.shared.frozen_inventory < defrosts

defrosts = x.shared.frozen_inventory;

end

x_ps = x.(ps.name) + defrosts;

sx_updates = struct( ...

'frozen_inventory', struct('op', '-', 'val', defrosts), ...

'thawed_inventory', struct('op', '+', 'val', defrosts) );

out_args = defrosts;

18The fact that the units are in “hours” is also specified in the initialize method of the
burger shop simulator.
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First the amount to defrost (defrosts) is taken from the 'defrosts' field of the
input u where it has been placed by one of the input methods, as we will see later.
Then the amount is limited, if necessary, by the existing frozen inventory, which
is found in the corresponding shared state field. Finally, the defrosted amount is
added to the running total of defrosted burgers tracked by the process-specific state
for 'defrost' returned x ps, the shared inventories are updated, and the defrosted
amount is returned in out args to make it available to the output method.

The initialize method must also be implemented to initialize the value of the
process-specific state to zero.

function x_ps = initialize(ps, x, sim_inputdir)

%INITIALIZE @bg_defrost/initialize

x_ps = 0;

The input data specific to the defrost process can either be loaded for the particu-
lar instance, each time the process is triggered, by implementing load current inputs,
or it can be pre-loaded at the beginning of the simulation or the run by implement-
ing preload sim inputs or preload run inputs. In this case, that latter is used to
pre-load the inputs for 'defrost' at the beginning of each run.

function [thisrun, byidx] = ...

preload_run_inputs(ps, sim_name, sim_inputdir, R, nidx, r)

%PRELOAD_RUN_INPUTS @bg_defrost/preload_run_inputs

season = {'base', 'growth'};

fname = fullfile(sim_inputdir, ...

sprintf('%s-%s-run-%d.txt', ps.name, season{r{1}}, 1));

defrosts = load(fname);

thisrun = [];

byidx = struct('defrosts', num2cell(defrosts));

This method looks for a file in <SIMINPUTDIR> whose name is based on the run index
r. This file contains the defrost inputs for each defrost operation in the run, so the
data is assigned to the byidx field in a field called 'defrosts', which we saw was
used to access it in the update method.

Finally, the output method corresponding to gti(·) is implemented to return the
amount defrosted, which was passed from the update method via out args.
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function y_ps = output(ps, x, u, sim_name, sim_outputdir, r, idx, out_args)

%OUTPUT @bg_defrost/output

if nargin == 1

y_ps = 0;

else

y_ps = out_args;

end

Notice that when output is called without input arguments, it returns a non-empty
scalar to indicate that space should be allocated in the simulator output struct for
'defrost' outputs. The defrosted amount returned for normal calls will be stored in
sim.y.defrost(r{:}, idx) for post-processing by the simulator’s post run method,
where r is the run index and idx is the index of the defrost instance. For more
information on the output see Section 4.5.

6.2.4 Input Data

There are two types of data associated with a simulation. The first is data associated
with the setup of the initial state, which is common for all runs, and second, data
that is made available to the simulation through the input variable ut at a particular
time t, which may differ from one run to another. All of these data are supplied
by the user in the <SIMINPUTDIR>, which in the case of the burger shop example, is
<INPUTDIR>/burger shop example/inputs/.

In this example, the process-specific states that track the total number of burgers
ordered, delivered, defrosted, grilled and sold are all set to zero by the initialize

method of the corresponding process, so they do not need to access any data files.
The inventories, on the other hand, are shared states whose initial values are spec-
ified by files in <SIMINPUTDIR>/shared states/, namely, in frozen inventory.txt,
thawed inventory.txt, and grilled inventory.txt. The order queue, also a shared
state, starts out empty, so it does not need an input file, though it could be provided
as order queue.m.

As described in Section 4.4, the input struct ut, made available to the update and
output methods of each process as u, is assembled at each time step from multiple
sources. This data consists of the number of burgers grilled and sold at each hour,
the number of burgers thawed at each defrost cycle, and the orders submitted each
week and delivered daily. Notice that some of the data is tied to the timing of
specific processes, while others, like the amount sold, correspond to the simulation
time step. The former will be loaded by a method of the corresponding process,
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while the latter will be loaded by a method of the simulator. All are loaded from
files in the <SIMINPUTDIR> directory. For illustration purposes, some are pre-loaded
at the beginning of the simulation, some at the beginning of each run, and others
are loaded at the period when they are needed. How the files are arranged within
<SIMINPUTDIR> and when they are loaded or pre-loaded are design decisions that
should be informed by memory requirements and convenient formats for the input
data.

Table 6-1: Input Loading for the Burger Shop Example

data pre-loaded for into field by @class/method order by

# sold current run 'sold' @burger shop/preload run inputs t

# to grill entire batch 'grills' @bg grill/preload sim inputs r, idx
# to defrost current run 'defrosts' @bg defrost/preload run inputs idx

weekly order just-in-time 'orders' @bg order/load current inputs –

† Footnote.

Table 6-1 summarizes the way each type of input data for the burger shop is
loaded. The burger shop example is arranged with two runs, one with “base” values
for the inputs and a second run representing a “growth” scenario, where the sales
are higher.

The number of burgers sold at each hour of a given run is pre-loaded into the
'sold' field at the beginning of the run by the simulator’s preload run inputs

method and arranged by time step (byt), since the data is simply a vector of numbers,
one for each simulation time step.

function [thisrun, byt] = preload_run_inputs(sim, sim_name, sim_inputdir, r)

%PRELOAD_RUN_INPUTS @burger_shop/preload_run_inputs

season = {'base-run', 'growth-run'};

fname = fullfile(sim_inputdir, ...

sprintf('sold-%s.txt', season{r{1}}));

sold = load(fname);

thisrun = [];

byt = struct('sold', num2cell(sold));

The number of burgers grilled in each hour are pre-loaded into the 'grills' field
for all runs at the beginning of the simulation by the preload sim inputs method of
the 'grill' process.
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function [thissim, byrun, byidx, byboth] = ...

preload_sim_inputs(ps, sim_name, sim_inputdir, R, nidx)

%PRELOAD_SIM_INPUTS @bg_grill/preload_sim_inputs

fname = fullfile(sim_inputdir, ...

sprintf('%s-run-%d.txt', ps.name, 1));

grills = load(fname)';

thissim = [];

byrun = [];

byidx = [];

byboth = struct('grills', num2cell(grills));

The number of burgers defrosted every two hours is also pre-loaded at the be-
ginning of each run, but since the data corresponds to triggers of the 'defrost'
process, one for each call to update, they are loaded into the 'defrosts' field by the
preload run inputs method of that process and arranged by the index of the process
update instance (byidx).

function [thisrun, byidx] = ...

preload_run_inputs(ps, sim_name, sim_inputdir, R, nidx, r)

%PRELOAD_RUN_INPUTS @bg_defrost/preload_run_inputs

season = {'base', 'growth'};

fname = fullfile(sim_inputdir, ...

sprintf('%s-%s-run-%d.txt', ps.name, season{r{1}}, 1));

defrosts = load(fname);

thisrun = [];

byidx = struct('defrosts', num2cell(defrosts));

And finally, the orders are simply loaded as needed, each time the order process is
triggered, by the load current inputs method of the 'order' process. These orders
are loaded into the 'orders' field of the input struct where they can be accessed by
update and output methods as u.orders.
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function thisidx = ...

load_current_inputs(ps, sim_name, sim_inputdir, R, nidx, r, idx)

%LOAD_CURRENT_INPUTS @bg_order/load_current_inputs

season = {'base', 'growth'};

fcn_name = sprintf('%s_%s_run', ps.name, season{r{1}});

orders = feval_w_path_mpsim(sim_inputdir, fcn_name, idx);

thisidx = struct('orders', orders);

6.2.5 Post-processing of Output

The simulation output must include the history of amounts ordered, delivered, thawed,
grilled and sold, and the inventory levels at each hour for frozen, thawed and grilled
burgers.

Since the amount handled by each process is determined in its update method,
this value is passed to the corresponding output method via out args and included
directly in the output, as we saw in Section 6.2.3 for the 'defrost' process. The
inventories, on the other hand, are already available as part of the shared state, so
they need not be passed via out args and can be accessed directly and included by
the output method of a process like 'grill' that updates every hour.

function y_ps = output(ps, x, u, sim_name, sim_outputdir, r, idx, out_args)

%OUTPUT @bg_grill/output

if nargin == 1

y_ps = struct( ...

'grills', 0, ...

'sold', 0, ...

'frozen_inventory', 0, ...

'thawed_inventory', 0, ...

'grilled_inventory', 0 ...

);

else

y_ps = struct( ...

'grills', out_args, ...

'sold', u.sold, ...

'frozen_inventory', x.shared.frozen_inventory, ...

'thawed_inventory', x.shared.thawed_inventory, ...

'grilled_inventory', x.shared.grilled_inventory ...

);

end
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Table 6-2: Structure of Burger Shop Output Struct

name description

sim simulator object
y full simulator output struct
.defrost(r{:}, idx) number of burgers defrosted, for run r, instance idx

.deliver(r{:}, idx) number of burgers delivered, for run r, instance idx

.grill(r{:}, idx) additional data for run r, hour idx
.grills number of burgers grilled
.sold number of burgers sold
.frozen inventory number of burgers in frozen inventory
.thawed inventory number of burgers in thawed inventory
.grilled inventory number of burgers in grilled inventory

.order(r{:}, idx) number of burgers ordered, for run r, instance idx

This results in an output struct at the end of the burger shop simulation with
the structure shown in Table 6-2. The post run method of burger shop processes
and pretty-prints this output data to the console and saves it to a MAT-file in
<SIMOUTPUTDIR>, which in this case is <OUTPUTDIR>/burger shop example/outputs/.

6.3 Multi-dimensional Runs

The burger shop example described in the previous section was structured with two
runs, a “base” and a “growth” run. MP-Sim allows for more complex multidimen-
sional sets of runs. In fact, it includes an illustration of extending the burger shop
example to a two-dimensional set of runs, with two sets of slightly different inputs
for each “base” run and each “growth” run. It can be run using input data from the
same 'burger shop example' as follows.

burger_shop_2d().run('burger_shop_example');

The code for the implementation of the burger shop example with two-dimensional
runs described here can be found in <MPSIM>/lib/t in the following classes:

• @burger shop 2d

• @bg2 defrost

• @bg2 deliver

• @bg2 grill

• @bg2 order
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Likewise, the input data files for the 'burger shop example' can be found in
<MPSIM>/sim data/burger shop example in the files:19

• defrost-base-run-1.txt

• defrost-base-run-2.txt

• defrost-growth-run-1.txt

• defrost-growth-run-2.txt

• grill-run-1.txt

• grill-run-2.txt

• order multi run.m

• shared states/frozen inventory.txt

• shared states/grilled inventory.txt

• shared states/thawed inventory.txt

The burger shop 2d simulator inherits everything from burger shop 2d, and the
bg2 <ps name> classes inherit from the corresponding bg <ps name> classes, with only
a few minor modifications/overrides.

First, in the initialization method, the simulator sets sim.R to a vector of
dimensions for the runs, namely a 2 × 2 array of runs, where the first dimension
corresponds to “base” and ”growth” and the second to the two different realizations
of each.

sim.R = [2 2];

The initialization method also registers the bg2 <ps name> versions of the pro-
cesses. And finally, the simulator overrides post run with a version designed for
two-dimensional runs.

The process classes all explicitly inherit the constructor of their parent and over-
ride the input loading classes to access files corresponding to the second dimension
of the runs.20

19The 'burger shop example' simulation includes data for both the single-dimensional burger
shop example (@burger shop) and the 2-dimensional version (@burger shop 2d).

20The @bg2 deliver class also currently includes a preload sim inputs method that is only
used for testing.
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7 MP-Sim for Matpower Simulations

MP-Sim can be integrated with Matpower [4, 5] and the Matpower Optimal
Scheduling Tool [6] to perform various types of power flow, unit commitment and
dispatch simulations. An example simulation of an hourly dispatch problem using an
optimal power flow (OPF) is provided in the distribution. In this example, MP-Sim
is used to solve an hourly dispatch using an AC OPF on a 30-bus power system
model with load profiles that differ between the two runs.

The simulation is implemented using the opf sim class for the simulator and a sin-
gle process opf hourly dispatch, whose update() method solves the OPF problem.
To run the OPF simulation, first install Matpower then type in the console:

opf_sim().run('OPF_example');

If Matpower is installed, running the MP-Sim tests via test mpsim will also
include tests for opf sim.

The example code to implement the OPF simulation described here can be found
in <MPSIM>/lib/t in the following classes:

• @opf sim

• @opf hourly dispatch

The <MPSIM>/sim data/OPF example directory contains the corresponding input
data for the 'OPF example' simulation.

• case30 mpsim.m – base Matpower case file
• loads1.txt – load profile for run 1
• loads2.txt – load profile for run 2

The post run method of opf sim generates a few plots that are saved to PDF files in
<SIMOUTPUTDIR>, which in this case is <OUTPUTDIR>/OPF example/outputs/.

• congestion.pdf – profiles of congestion prices on 2 lines
• generation.pdf – profiles of average generation across 2 runs
• nodal price.pdf – min, max, mean nodal prices
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Appendix A Release History

The full release history can be found in CHANGES.md or online at https://github.

com/MATPOWER/mpsim/blob/master/CHANGES.md.

A.1 Version 1.0 – released April 17, 2018

The MP-Sim 1.0 User’s Manual is available online.21

• Add to nested struct copy mpsim() ability to copy fields that are struct arrays.

• Fix bug #1 where t opf sim failed to create outputs dir.

• Fix bug #3 that was causing t opf sim to fail on Octave, and preventing Travis-
CI integration.

A.2 Version 1.0b1 – released May 19, 2017

The MP-Sim 1.0b1 User’s Manual is available online.22

• Initial release.

21http://www.pserc.cornell.edu/matpower/docs/MP-Sim-manual-1.0.pdf
22http://www.pserc.cornell.edu/matpower/docs/MP-Sim-manual-1.0b1.pdf
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