
MP-Opt-Model User’s Manual

Version 4.0

Ray D. Zimmerman

October 18, 2021

© 2020, 2021 Power Systems Engineering Research Center (PSerc)

All Rights Reserved

Contents

1 Introduction 8
1.1 Background . 8
1.2 License and Terms of Use . 9
1.3 Citing MP-Opt-Model . 10
1.4 MP-Opt-Model Development . 10

2 Getting Started 11
2.1 System Requirements . 11
2.2 Installation . 11
2.3 Sample Usage . 12
2.4 Documentation . 15

3 MP-Opt-Model – Overview 16

4 Solver Interface Functions 17
4.1 LP/QP Solvers – qps master . 17

4.1.1 QP Example . 20
4.2 MILP/MIQP Solvers – miqps master 21

4.2.1 MILP Example . 23
4.3 NLP Solvers – nlps master . 23

4.3.1 NLP Example 1 . 26
4.3.2 NLP Example 2 . 27

4.4 Nonlinear Equation Solvers – nleqs master 30
4.4.1 NLEQ Example 1 . 32
4.4.2 NLEQ Example 2 . 35

4.5 Parameterized Nonlinear Equation Solver – pnes master 39
4.5.1 Parameterization . 39
4.5.2 Predictor . 40
4.5.3 Corrector . 41
4.5.4 Step Length Control . 41
4.5.5 Event Detection and Location 42
4.5.6 Callback Functions . 42
4.5.7 pnes master . 46
4.5.8 PNE Example . 51

2

5 Optimization Model Class – opt model 54
5.1 Adding Variables . 54

5.1.1 Variable Subsets . 55
5.2 Adding Constraints . 56

5.2.1 Linear Constraints . 56
5.2.2 General Nonlinear Constraints 57

5.3 Adding Costs . 58
5.3.1 Quadratic Costs . 59
5.3.2 General Nonlinear Costs . 60

5.4 Solving the Model . 61
5.5 Accessing the Model . 63

5.5.1 Indexing . 63
5.5.2 Variables . 68
5.5.3 Constraints . 69
5.5.4 Costs . 71
5.5.5 Model Solution . 73

5.6 Modifying the Model . 78
5.7 Indexed Sets . 79
5.8 Miscellaneous Methods . 80

5.8.1 Public Methods . 80
5.8.2 Private Methods . 83

5.9 Matpower Index Manager Base Class – mp idx manager 83
5.10 Reference . 86

5.10.1 Properties . 86
5.10.2 Methods . 86

6 Utility Functions 88
6.1 have fcn . 88
6.2 mpomver . 88
6.3 nested struct copy . 88
6.4 Private Feature Detection Functions 88

6.4.1 have feature bpmpd . 89
6.4.2 have feature catchme . 89
6.4.3 have feature clp . 89
6.4.4 have feature opti clp . 89
6.4.5 have feature cplex . 89
6.4.6 have feature evalc . 89
6.4.7 have feature fmincon . 89

3

6.4.8 have feature fmincon ipm 90
6.4.9 have feature fsolve . 90
6.4.10 have feature glpk . 90
6.4.11 have feature gurobi . 90
6.4.12 have feature intlinprog . 90
6.4.13 have feature ipopt . 90
6.4.14 have feature ipopt auxdata 90
6.4.15 have feature isequaln . 91
6.4.16 have feature knitro . 91
6.4.17 have feature knitromatlab 91
6.4.18 have feature ktrlink . 91
6.4.19 have feature linprog . 91
6.4.20 have feature linprog ds . 91
6.4.21 have feature mosek . 91
6.4.22 have feature optim . 92
6.4.23 have feature optimoptions 92
6.4.24 have feature osqp . 92
6.4.25 have feature quadprog . 92
6.4.26 have feature quadprog ls 92
6.4.27 have feature sdpt3 . 92
6.4.28 have feature sedumi . 92
6.4.29 have feature yalmip . 93

6.5 Matpower-related Functions . 93
6.5.1 mpopt2nleqopt . 93
6.5.2 mpopt2nlpopt . 93
6.5.3 mpopt2qpopt . 93
6.5.4 mpopt2pneopt . 94

7 Acknowledgments 95

Appendix A MP-Opt-Model Files, Functions and Classes 96

Appendix B Optional Packages 103
B.1 BPMPD MEX – MEX interface for BPMPD 103
B.2 CLP – COIN-OR Linear Programming 103
B.3 CPLEX – High-performance LP, QP, MILP and MIQP Solvers 104
B.4 GLPK – GNU Linear Programming Kit 104
B.5 Gurobi – High-performance LP, QP, MILP and MIQP Solvers 105
B.6 Ipopt – Interior Point Optimizer . 105

4

B.7 Artelys Knitro – Non-Linear Programming Solver 106
B.8 MOSEK – High-performance LP, QP, MILP and MIQP Solvers . . . 106
B.9 Optimization Toolbox – LP, QP, NLP, NLEQ and MILP Solvers . . . 107
B.10 OSQP – Operator Splitting Quadratic Program Solver 107

Appendix C Release History 108
C.1 Version 0.7 – Jun 20, 2019 . 108
C.2 Version 0.8 – Apr 29, 2020 (not released publicly) 108
C.3 Version 1.0 – released May 8, 2020 110
C.4 Version 2.0 – released Jul 8, 2020 . 110
C.5 Version 2.1 – released Aug 25, 2020 112
C.6 Version 3.0 – released Oct 8, 2020 . 113
C.7 Version 4.0 – released Oct 18, 2021 114

References 117

5

List of Tables

4-1 Input Arguments for qps master . 18
4-2 Output Arguments for qps master . 18
4-3 Options for qps master . 19
4-4 Input Arguments for miqps master 21
4-5 Options for miqps master . 22
4-6 Input Arguments for nlps master . 24
4-7 Output Arguments for nlps master 25
4-8 Options for nlps master . 25
4-9 Input Arguments for nleqs master 31
4-10 Output Arguments for nleqs master 32
4-11 Options for nleqs master . 33
4-12 Callback Input Arguments . 43
4-13 Callback Output Arguments . 44
4-14 Fields of Continuation State Struct 44
4-15 Input Arguments for pnes master . 46
4-16 Output Arguments for pnes master 47
4-17 Options for pnes master . 48
4-18 Plot Options for pnes master . 49
4-19 Warm-start Data for pnes master . 50
5-1 Options for solve . 62
5-2 Values for alg Option to solve . 63
5-3 Example Indexing Data . 64
5-4 Valid Set Types . 65
5-5 Model Solution . 74
5-6 Inputs for get soln . 75
5-7 Values of tags input to get soln . 76
5-8 Output of parse soln . 77
5-9 Inputs for set params . 78
5-10 Matpower Index Manager (mp idx manager) Properties and Methods 84
5-11 Matpower Index Manager (mp idx manager) Object Structure . . . 85
5-12 opt model Properties . 86
5-13 opt model Methods . 87
A-1 MP-Opt-Model Files and Functions 96
A-2 Solver Functions . 97
A-3 PNE Implementation Functions . 98
A-4 Solver Options, etc. 98

6

A-5 Optimization Model Class . 99
A-6 Matpower Index Manager Class . 100
A-7 Utility Functions . 100
A-8 Feature Detection Functions . 101
A-9 MP-Opt-Model Examples & Tests . 102

7

1 Introduction

1.1 Background

MP-Opt-Model is a package of Matlab language M-files1 for constructing and solv-
ing mathematical programming and optimization problems. It provides an easy-
to-use, object-oriented interface for building and solving your model. It also in-
cludes a unified interface for calling numerous LP, QP, mixed-integer and nonlinear
solvers, with the ability to switch solvers simply by changing an input option. The
MP-Opt-Model project page can be found at:

https://github.com/MATPOWER/mp-opt-model

MP-Opt-Model is based on code that was developed primarily by Ray D. Zim-
merman of PSerc2 at Cornell University, along with significant contributions from
others, as part of the Matpower [1, 2] project.

Up until version 7 of Matpower, the code now included in MP-Opt-Model
was distributed only as an integrated part of Matpower. After the release of
Matpower 7, MP-Opt-Model was split out into a separate project, though it is
still included with Matpower.

1Also compatible with GNU Octave [3].
2http://pserc.org/

8

https://github.com/MATPOWER/mp-opt-model
https://github.com/MATPOWER/mp-opt-model
https://github.com/MATPOWER/mp-opt-model
https://matpower.org
http://pserc.org/

1.2 License and Terms of Use

The code in MP-Opt-Model is distributed under the 3-clause BSD license [4]. The
full text of the license can be found in the LICENSE file at the top level of the distribu-
tion or at https://github.com/MATPOWER/mp-opt-model/blob/master/LICENSE

and reads as follows.

Copyright (c) 2004-2021, Power Systems Engineering Research Center

(PSERC) and individual contributors (see AUTHORS file for details).

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

9

https://github.com/MATPOWER/mp-opt-model/blob/master/LICENSE

1.3 Citing MP-Opt-Model

We request that publications derived from the use of MP-Opt-Model explicitly ac-
knowledge that fact by citing the MP-Opt-Model User’s Manual [5]. The citation
and DOI can be version-specific or general, as appropriate. For version 4.0, use:

R. D. Zimmerman. MP-Opt-Model User’s Manual, Verision 4.0. 2021. [Online].
Available: https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf
doi: 10.5281/zenodo.5576755

For a version non-specific citation, use the following citation and DOI, with<YEAR>
replaced by the year of the most recent release:

R. D. Zimmerman. MP-Opt-Model User’s Manual. <YEAR>. [Online]. Available:
https://matpower.org/docs/MP-Opt-Model-manual.pdf

doi: 10.5281/zenodo.3818002

A list of versions of the User’s Manual with release dates and version-specific DOI’s
can be found via the general DOI at https://doi.org/10.5281/zenodo.3818002.

1.4 MP-Opt-Model Development

The MP-Opt-Model project uses an open development paradigm, hosted on the
MP-Opt-Model GitHub project page:

https://github.com/MATPOWER/mp-opt-model

The MP-Opt-Model GitHub project hosts the public Git code repository as well
as a public issue tracker for handling bug reports, patches, and other issues and
contributions. There are separate GitHub hosted repositories and issue trackers
for MP-Opt-Model, MP-Test, MIPS, and Matpower, etc., all are available from
https://github.com/MATPOWER/.

10

https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf
https://doi.org/10.5281/zenodo.5576755
https://matpower.org/docs/MP-Opt-Model-manual.pdf
https://doi.org/10.5281/zenodo.3818002
https://doi.org/10.5281/zenodo.3818002
https://github.com/MATPOWER/mp-opt-model
https://github.com/MATPOWER/

2 Getting Started

2.1 System Requirements

To use MP-Opt-Model 4.0 you will need:

• Matlab® version 7.5 (R2007b) or later3, or

• GNU Octave version 4.0 or later4

• MIPS, Matpower Interior Point Solver [6, 7]5

• MP-Test, for running the MP-Opt-Model test suite.6

For the hardware requirements, please refer to the system requirements for the
version of Matlab7 or Octave that you are using.

In this manual, references to Matlab usually apply to Octave as well.

2.2 Installation

Note to Matpower users: MP-Opt-Model and its prerequisites, MIPS and MP-
Test, are included when you install Matpower. There is generally no need to install
MP-Opt-Model separately. You can skip directly to step 3 to verify.

Installation and use of MP-Opt-Model requires familiarity with the basic opera-
tion of Matlab or Octave, including setting up your Matlab/Octave path.

Step 1: Clone the repository or download and extract the zip file of the MP-Opt-Model
distribution from the MP-Opt-Model project page8 to the location of your
choice. The files in the resulting mp-opt-model or mp-opt-modelXXX direc-
tory, where XXX depends on the version of MP-Opt-Model, should not need
to be modified, so it is recommended that they be kept separate from your
own code. We will use <MPOM> to denote the path to this directory.

3Matlab is available from The MathWorks, Inc. (https://www.mathworks.com/). Matlab
is a registered trademark of The MathWorks, Inc.

4GNU Octave [3] is free software, available online at https://www.gnu.org/software/octave/.
5MIPS is available at https://github.com/MATPOWER/mips.
6MP-Test is available at https://github.com/MATPOWER/mptest.
7https://www.mathworks.com/support/sysreq/previous_releases.html
8https://github.com/MATPOWER/mp-opt-model

11

https://github.com/MATPOWER/mips
https://github.com/MATPOWER/mptest
https://github.com/MATPOWER/mp-opt-model{}
https://www.mathworks.com/
https://www.gnu.org/software/octave/
https://github.com/MATPOWER/mips
https://github.com/MATPOWER/mptest
https://www.mathworks.com/support/sysreq/previous_releases.html
https://github.com/MATPOWER/mp-opt-model

Step 2: Add the following directories to your Matlab or Octave path:

• <MPOM>/lib – core MP-Opt-Model functions

• <MPOM>/lib/t – test scripts for MP-Opt-Model

Step 3: At the Matlab/Octave prompt, type test mp opt model to run the test
suite and verify that MP-Opt-Model is properly installed and functioning.9

The result should resemble the following:

>> test_mp_opt_model

t_have_fcn..............ok

t_nested_struct_copy....ok

t_nleqs_master..........ok (30 of 150 skipped)

t_pnes_master...........ok

t_qps_master............ok (100 of 432 skipped)

t_miqps_master..........ok (68 of 288 skipped)

t_nlps_master...........ok

t_opt_model.............ok

t_om_solve_leqs.........ok

t_om_solve_nleqs........ok (36 of 194 skipped)

t_om_solve_pne..........ok

t_om_solve_qps..........ok (81 of 387 skipped)

t_om_solve_miqps........ok (14 of 118 skipped)

t_om_solve_nlps.........ok

All tests successful (3430 passed, 329 skipped of 3759)

Elapsed time 7.75 seconds.

2.3 Sample Usage

Suppose we have the following constrained 4-dimensional quadratic programming
(QP) problem with two 2-dimensional variables, y and z, and two constraints, one
equality and the other inequality, along with lower bounds on all of the variables.

min
y,z

1

2

[
yT zT

]
Q

[
y
z

]
(2.1)

9The tests require functioning installations of MP-Test and MIPS.

12

https://github.com/MATPOWER/mptest
https://github.com/MATPOWER/mips

subject to

A1

[
y
z

]
= b1 (2.2)

A2y ≤ u2 (2.3)

y ≥ ymin (2.4)

z ≤ zmax (2.5)

And suppose the data for the problem is provided as follows.

%% variable initial values

y0 = [1; 0];

z0 = [0; 1];

%% variable lower bounds

ymin = [0; 0];

zmax = [0; 2];

%% constraint data

A1 = [6 1 5 -4]; b1 = 4;

A2 = [4 9]; u2 = 2;

%% quadratic cost coefficients

Q = [8 1 -3 -4;

1 4 -2 -1;

-3 -2 5 4;

-4 -1 4 12];

Below, we will show two approaches to construct and solve the problem. The
first method, based on the the Optimization Model class opt model, allows you to
add variables, constraints and costs to the model individually. Then opt model au-
tomatically assembles and solves the full model automatically.

%%----- METHOD 1 -----

%% build model

om = opt_model;

om.add_var('y', 2, y0, ymin);

om.add_var('z', 2, z0, [], zmax);

om.add_lin_constraint('lincon1', A1, b1, b1);

om.add_lin_constraint('lincon2', A2, [], u2, {'y'});

om.add_quad_cost('cost', Q, []);

%% solve model

[x, f, exitflag, output, lambda] = om.solve();

13

The second method requires you to construct the parameters for the full problem
manually, then call the solver function directly.

%%----- METHOD 2 -----

%% assemble model parameters manually

xmin = [ymin; -Inf(2,1)];

xmax = [Inf(2,1); zmax];

x0 = [y0; z0];

A = [A1; A2 0 0];

l = [b1; -Inf];

u = [b1; u2];

%% solve model

[x, f, exitflag, output, lambda] = qps_master(Q, [], A, l, u, xmin, xmax, x0);

The above examples are included in <MPOM>lib/t/qp ex1.m along with some
commands to print the results, yielding the output below for each approach:

f = 1.875 exitflag = 1

var bound shadow prices

x lambda.lower lambda.upper

0.5000 0.0000 0.0000

0.0000 5.1250 0.0000

-0.0000 0.0000 8.7500

-0.2500 0.0000 0.0000

constraint shadow prices

lambda.mu_l lambda.mu_u

1.2500 0.0000

0.0000 0.6250

Both approaches can be applied to each of the types of problems that MP-Opt-Model
handles, namely, LP, QP, MILP, MIQP, NLP and linear and nonlinear equations, in-
cluding families of parameterized nonlinear equations.

An options struct can be passed to the solve method or the qps master function
to select a specific solver, control the level of progress output, or modify a solver’s
default parameters.

14

2.4 Documentation

There are two primary sources of documentation for MP-Opt-Model. The first is this
manual, which gives an overview of the capabilities and structure of MP-Opt-Model
and describes the formulations behind the code. It can be found in your MP-Opt-Model
distribution at <MPOM>/docs/MP-Opt-Model-manual.pdf and the latest version is al-
ways available at: https://matpower.org/docs/MP-Opt-Model-manual.pdf.

And second is the built-in help command. As with the built-in functions and
toolbox routines in Matlab and Octave, you can type help followed by the name
of a command or M-file to get help on that particular function. Many of the M-
files in MP-Opt-Model have such documentation and this should be considered the
main reference for the calling options for each function. See Appendix A for a list of
MP-Opt-Model functions.

15

https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf
https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf
https://matpower.org/docs/MP-Opt-Model-manual.pdf
https://matpower.org/docs/MP-Opt-Model-manual.pdf

3 MP-Opt-Model – Overview

MP-Opt-Model10 and its functionality can be divided into two main parts, plus a
few additional utility functions.

The first part consists of interfaces to various numerical optimization solvers and
the wrapper functions that provide a single common interface to all supported solvers
for a particular class of problems. There is currently a common interface provided
for each of the following:

• linear (LP) and quadratic (QP) programming problems

• mixed-integer linear (MILP) and quadratic (MIQP) programming problems

• nonlinear programming problems (NLP)

• linear equations (LEQ)

• nonlinear equations (NLEQ)

• parameterized nonlinear equations (PNE)

The second part consists of an optimization model class designed to help the user
construct an optimization or zero-finding problem by adding variables, constraints
and/or costs, then solve the problem and extract the solution in terms of the indi-
vidual sets of variables, constraints and/or costs provided.

Finally, MP-Opt-Model includes a utlity function that can be used to get infor-
mation about the availability of optional functionality, another to help with copying
nested struct data, and a function that provides version information on the current
MP-Opt-Model installation.

10The name MP-Opt-Model is derived from “Matpower Optimization Model,” referring to
the object used to encapsulate the optimization problem formed by Matpower when solving an
optimal power flow (OPF) problem.

16

4 Solver Interface Functions

4.1 LP/QP Solvers – qps master

The qps master function provides a common quadratic programming solver interface
for linear programming (LP) and quadratic (QP) programming problems, that is,
problems of the form:

min
x

1

2
xTHx+ cTx (4.1)

subject to

l ≤ Ax ≤ u (4.2)

xmin ≤ x ≤ xmax. (4.3)

This function can be used to solve the problem with any of the available solvers
by calling it as follows,

[x, f, exitflag, output, lambda] = ...

qps_master(H, c, A, l, u, xmin, xmax, x0, opt);

where the input and output arguments are described in Tables 4-1 and 4-2, respec-
tively, and the options in Table 4-3. Alternatively, the input arguments can be
packaged as fields in a problem struct and passed in as a single argument, where all
fields are (individually) optional.

[x, f, exitflag, output, lambda] = qps_master(problem);

The calling syntax is very similar to that used by quadprog from the Matlab
Optimization Toolbox, with the primary difference that the linear constraints are
specified in terms of a single doubly-bounded linear function (l ≤ Ax ≤ u) as opposed
to separate equality constrained (Aeqx = beq) and upper bounded (Ax ≤ b) functions.

The qps master function is simply a master wrapper around corresponding func-
tions specific to each solver, namely, qps bpmpd, qps clp, qps cplex, qps glpk, qps gurobi,
qps ipopt, qps mips, qps mosek, and qps ot. Each of these functions has an interface
identical to that of qps master, with the exception of the options struct for qps mips,
which is a simple MIPS options struct.

17

Table 4-1: Input Arguments for qps master†

name description

H (possibly sparse) matrix H of quadratic cost coefficients
c column vector c of linear cost coefficients
A (possibly sparse) matrix A of linear constraint coefficients
l column vector l of lower bounds on Ax, defaults to −∞
u column vector u of upper bounds on Ax, defaults to +∞
xmin column vector xmin of lower bounds on x, defaults to −∞
xmax column vector xmax of upper bounds on x, defaults to +∞
x0 optional starting value of optimization vector x (ignored by some solvers)
opt optional options struct (all fields optional), see Table 4-3 for details
problem alternative, single argument input struct with fields corresponding to arguments above

† All arguments are individually optional, though enough must be supplied to define a meaningful problem.

Table 4-2: Output Arguments for qps master

name description

x solution vector x
f final objective function value f(x) = 1

2x
THx+ cTx

exitflag exit flag
1 – converged successfully

≤ 0 – solver-specific failure code
output output struct with the following fields:

alg – algorithm code of solver used
(others) – solver-specific fields

lambda struct containing the Langrange and Kuhn-Tucker multipliers on the constraints,
with fields:

mu l – lower (left-hand) limit on linear constraints
mu u – upper (right-hand) limit on linear constraints

lower – lower bound on optimization variables
upper – upper bound on optimization variables

18

Table 4-3: Options for qps master

name default description

alg 'DEFAULT' determines which solver to use
'DEFAULT' – automatic, first available of Gurobi, CPLEX,

MOSEK, Optimization Toolbox (if Matlab),
GLPK (LP only), BPMPD, MIPS

'BPMPD' – BPMPD*

'CLP' – CLP*

'CPLEX' – CPLEX*

'GLPK' – GLPK*(LP only)
'GUROBI' – Gurobi*

'IPOPT' – Ipopt*

'MIPS' – MIPS, Matpower Interior Point Solver
'MOSEK' – MOSEK*

'OT' – Matlab Opt Toolbox, quadprog, linprog
verbose 0 amount of progress info to be printed

0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info
3 – print all progress info

bp opt empty options vector for bp*

clp opt empty options vector for CLP*

cplex opt empty options struct for CPLEX*

glpk opt empty options struct for GLPK*

grb opt empty options struct for Gurobi*

ipopt opt empty options struct for Ipopt*

linprog opt empty options struct for linprog*

mips opt empty options struct for MIPS
mosek opt empty options struct for MOSEK*

quadprog opt empty options struct for quadprog*

* Requires the installation of an optional package. See Appendix B for details on the corresponding package.

19

https://github.com/MATPOWER/mips

4.1.1 QP Example

The following code shows an example of using qps master to solve a simple 4-
dimensional QP problem11 using the default solver.

H = [1003.1 4.3 6.3 5.9;

4.3 2.2 2.1 3.9;

6.3 2.1 3.5 4.8;

5.9 3.9 4.8 10];

c = zeros(4,1);

A = [1 1 1 1;

0.17 0.11 0.10 0.18];

l = [1; 0.10];

u = [1; Inf];

xmin = zeros(4,1);

x0 = [1; 0; 0; 1];

opt = struct('verbose', 2);

[x, f, s, out, lambda] = qps_master(H, c, A, l, u, xmin, [], x0, opt);

Other examples of using qps master to solve LP and QP problems can be found
in t qps master.m.

11From https://v8doc.sas.com/sashtml/iml/chap8/sect12.htm.

20

https://v8doc.sas.com/sashtml/iml/chap8/sect12.htm

4.2 MILP/MIQP Solvers – miqps master

The miqps master function provides a common mixed-integer quadratic programming
solver interface for mixed-integer linear programming (MILP) and mixed-integer
quadratic programming (MIQP) problems. The form of the problem is identical to
(4.1)–(4.3), with the addition of two possible additional constraints, namely,

xi ∈ Z, ∀i ∈ I (4.4)

xj ∈ {0, 1}, ∀j ∈ B, (4.5)

where I and B are the sets of indices of variables that are restricted to integer or
binary values, respectively.

This function can be used to solve the problem with any of the available solvers
by calling it as follows,

[x, f, exitflag, output, lambda] = ...

miqps_master(H, c, A, l, u, xmin, xmax, x0, vtype, opt);

[x, f, exitflag, output, lambda] = miqps_master(problem);

The calling syntax for miqps master is identical to that used by qps master with the
exception of a single new input argument, vtype, to specify the variable type, just
before the options struct. The input arguments and options for miqps master are
described in Tables 4-4 and 4-5, respectively. The outputs are identical to those
shown in Table 4-2 for qps master.

Table 4-4: Input Arguments for miqps master

name description

all qps master input args from Table 4-1, with the following additions/modifications

vtype character string of length nx (number of elements in x), or 1 (value applies
to all variables in x), specifying variable type; allowed values are:†

'C' – continuous (default)
'B' – binary
'I' – integer

† CPLEX and Gurobi also include 'S' for semi-continuous and 'N' for semi-integer, but these have not been
tested.

By default, unless the skip prices option is set to 1, once miqps master has found
the integer solution, it constrain the integer variables to their solved values and call
qps matpower on the resulting problem to determine the shadow prices in lambda.

21

Table 4-5: Options for miqps master

name default description

alg 'DEFAULT' determines which solver to use
'DEFAULT' – automatic, first available of Gurobi, CPLEX,

MOSEK, Optimization Toolbox (if Matlab,
MILP only), GLPK (MILP only)

'CPLEX' – CPLEX*

'GLPK' – GLPK*(LP only)
'GUROBI' – Gurobi*

'MOSEK' – MOSEK*

'OT' – Matlab Opt Toolbox, intlinprog
verbose 0 amount of progress info to be printed

0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info
3 – print all progress info

skip prices 0 flag that specifies whether or not to skip the price computation
stage, in which the problem is re-solved for only the continu-
ous variables, with all others being constrained to their solved
values

price stage warn tol 10−7 tolerance on the objective function value and primal variable
relative mismatch required to avoid mismatch warning mes-
sage

cplex opt empty options struct for CPLEX*

glpk opt empty options struct for GLPK*

grb opt empty options struct for Gurobi*

intlinprog opt empty options struct for intlinprog*

mosek opt empty options struct for MOSEK*

* Requires the installation of an optional package. See Appendix B for details on the corresponding package.

The miqps master function is simply a master wrapper around corresponding
functions specific to each solver, namely, miqps cplex, miqps glpk, miqps gurobi,
miqps mosek, and miqps ot. Each of these functions has an interface identical to that
of miqps master.

22

4.2.1 MILP Example

The following code shows an example of using miqps master to solve a simple 2-
dimensional MILP problem12 using the default solver.

c = [-2; -3];

A = sparse([195 273; 4 40]);

u = [1365; 140];

xmax = [4; Inf];

vtype = 'I';

opt = struct('verbose', 2);

p = struct('c', c, 'A', A, 'u', u, 'xmax', xmax, 'vtype', vtype, 'opt', opt);

[x, f, s, out, lam] = miqps_master(p);

Other examples of using miqps master to solve MILP and MIQP problems can
be found in t miqps master.m.

4.3 NLP Solvers – nlps master

The nlps master function provides a common nonlinear programming solver inter-
face for general nonlinear programming (NLP) problems, that is, problems of the
form:

min
x
f(x) (4.6)

subject to

g(x) = 0 (4.7)

h(x) ≤ 0 (4.8)

l ≤ Ax ≤ u (4.9)

xmin ≤ x ≤ xmax (4.10)

where f : Rn → R, g : Rn → Rm and h : Rn → Rp.
This function can be used to solve the problem with any of the available solvers

by calling it as follows,

[x, f, exitflag, output, lambda] = ...

nlps_master(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt);

12From MOSEK 6.0 Guided Tour, section 7.13.1, https://docs.mosek.com/6.0/toolbox/

node009.html.

23

https://docs.mosek.com/6.0/toolbox/node009.html
https://docs.mosek.com/6.0/toolbox/node009.html

where the input and output arguments are described in Tables 4-6 and 4-7, respec-
tively. Alternatively, the input arguments can be packaged as fields in a problem

struct and passed in as a single argument, where all fields except f fcn and x0 are
optional.

[x, f, exitflag, output, lambda] = nlps_master(problem);

The calling syntax for nlps master is nearly identical to that of MIPS and very
similar to that used by fmincon from the Matlab Optimization Toolbox. The
primary difference from fmincon is that the linear constraints are specified in terms
of a single doubly-bounded linear function (l ≤ Ax ≤ u) as opposed to separate
equality constrained (Aeqx = beq) and upper bounded (Ax ≤ b) functions.

Table 4-6: Input Arguments for nlps master†

name description

f fcn handle to function that evaluates the objective function, its gradients and Hessian‡

for a given value of x, with calling syntax:
[f, df, d2f] = f fcn(x)

x0 starting value of optimization vector x
A, l, u define optional linear constraints l ≤ Ax ≤ u, where default values for elements of l

and u are -Inf and Inf, respectively.
xmin, xmax optional lower and upper bounds on x, with defaults -Inf and Inf, respectively
gh fcn handle to function that evaluates the optional nonlinear constraints and their gradi-

ents for a given value of x, with calling syntax:
[h, g, dh, dg] = gh fcn(x)

where the columns of dh and dg are the gradients of the corresponding elements of
h and g, i.e. dh and dg are transposes of the Jacobians of h and g, respectively

hess fcn handle to function that computes the Hessian‡of the Lagrangian for given values of x,
λ and µ, where λ and µ are the multipliers on the equality and inequality constraints,
g and h, respectively, with calling syntax:

Lxx = hess fcn(x, lam, cost mult),
where λ = lam.eqnonlin, µ = lam.ineqnonlin and cost mult is a parameter used
to scale the objective function

opt optional options struct (all fields optional), see Table 4-8 for details
problem alternative, single argument input struct with fields corresponding to arguments

above

† All inputs are optional except f fcn and x0.
‡ If gh fcn is provided then hess fcn is also required. Specifically, if there are nonlinear constraints, the Hessian

information must be provided by the hess fcn function and it need not be computed in f fcn.

The user-defined functions for evaluating the objective function, constraints and
Hessian are identical to those required by MIPSj. That is, they identical to those

24

https://github.com/MATPOWER/mips
https://github.com/MATPOWER/mips

Table 4-7: Output Arguments for nlps master

name description

x solution vector
f final objective function value, f(x)
exitflag exit flag

1 – converged successfully
≤ 0 – solver-specific failure code

output output struct with the following fields:
alg – algorithm code of solver used

(others) – solver-specific fields
lambda struct containing the Langrange and Kuhn-Tucker multipliers on the con-

straints, with fields:
eqnonlin nonlinear equality constraints
ineqnonlin nonlinear inequality constraints
mu l lower (left-hand) limit on linear constraints
mu u upper (right-hand) limit on linear constraints
lower lower bound on optimization variables
upper upper bound on optimization variables

Table 4-8: Options for nlps master

name default description

alg 'DEFAULT' determines which solver to use
'DEFAULT' – automatic, current default is MIPS
'MIPS' – MIPS, Matpower Interior Point Solver

'FMINCON' – Matlab Opt Toolbox, fmincon*

'IPOPT' – Ipopt*

'KNITRO' – Artelys Knitro*

verbose 0 amount of progress info to be printed
0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info

mips opt empty options struct for MIPS
fmincon opt empty options struct for fmincon*

ipopt opt empty options struct for Ipopt*

knitro opt empty options struct for Artelys Knitro*

* Requires the installation of an optional package. See Appendix B for details on the corresponding package.

required by fmincon, with one exception described below for the Hessian evaluation
function. Specifically, f fcn should return f as the scalar objective function value
f(x), df as an n×1 vector equal to∇f and, unless gh fcn is provided and the Hessian

25

https://github.com/MATPOWER/mips

is computed by hess fcn, d2f as an n×n matrix equal to the Hessian ∂2f
∂x2 . Similarly,

the constraint evaluation function gh fcn must return the m× 1 vector of nonlinear
equality constraint violations g(x), the p×1 vector of nonlinear inequality constraint
violations h(x) along with their gradients in dg and dh. Here dg is an n×m matrix
whose jth column is ∇gj and dh is n × p, with jth column equal to ∇hj. Finally,

for cases with nonlinear constraints, hess fcn returns the n × n Hessian ∂2L
∂x2 of the

Lagrangian function

L(x, λ, µ, σ) = σf(x) + λTg(x) + µTh(x) (4.11)

for given values of the multipliers λ and µ, where σ is the cost mult scale factor for
the objective function. Unlike fmincon, some solvers, such as mips, pass this scale
factor to the Hessian evaluation function in the 3rd input argument.

The use of nargout in f fcn and gh fcn is recommended so that the gradients
and Hessian are only computed when required.

The nlps master function is simply a master wrapper around corresponding func-
tions specific to each solver, namely, mips, nlps fmincon, nlps ipopt, and nlps knitro.
Each of these functions has an interface identical to that of nlps master, with the
exception of the options struct for mips, which is a simple MIPS options struct.

4.3.1 NLP Example 1

The following code, included as nlps master ex1.m in <MPOM>lib/t, shows a simple
example of using nlps master to solve a 2-dimensional unconstrained optimization
of Rosenbrock’s “banana” function13

f(x) = 100(x2 − x2
1)2 + (1− x1)2. (4.12)

First, create a function that will evaluate the objective function, its gradients
and Hessian, for a given value of x. In this case, the coefficient of the first term is
defined as a paramter a.

13https://en.wikipedia.org/wiki/Rosenbrock_function

26

https://en.wikipedia.org/wiki/Rosenbrock_function

function [f, df, d2f] = banana(x, a)

f = a*(x(2)-x(1)^2)^2+(1-x(1))^2;

if nargout > 1 %% gradient is required

df = [4*a*(x(1)^3 - x(1)*x(2)) + 2*x(1)-2;

2*a*(x(2) - x(1)^2)];

if nargout > 2 %% Hessian is required

d2f = 4*a*[3*x(1)^2 - x(2) + 1/(2*a), -x(1);

-x(1) 1/2];

end

end

Then, create a handle to the function, defining the value of the paramter a to be
100, set up the starting value of x, and call the nlps master function to solve it.

>> f_fcn = @(x)banana(x, 100);

>> x0 = [-1.9; 2];

>> [x, f] = nlps_master(f_fcn, x0)

x =

1

1

f =

0

4.3.2 NLP Example 2

The second example14 solves the following 3-dimensional constrained optimization,
printing the details of the solver’s progress:

min
x
f(x) = −x1x2 − x2x3 (4.13)

subject to

x2
1 − x2

2 + x2
3 − 2 ≤ 0 (4.14)

x2
1 + x2

2 + x2
3 − 10 ≤ 0. (4.15)

14From https://en.wikipedia.org/wiki/Nonlinear_programming#3-dimensional_example.

27

https://en.wikipedia.org/wiki/Nonlinear_programming#3-dimensional_example

First, create a function to evaluate the objective function and its gradients,15

function [f, df, d2f] = f2(x)

f = -x(1)*x(2) - x(2)*x(3);

if nargout > 1 %% gradient is required

df = -[x(2); x(1)+x(3); x(2)];

if nargout > 2 %% Hessian is required

d2f = -[0 1 0; 1 0 1; 0 1 0]; %% actually not used since

end %% 'hess_fcn' is provided

end

one to evaluate the constraints, in this case inequalities only, and their gradients,

function [h, g, dh, dg] = gh2(x)

h = [1 -1 1; 1 1 1] * x.^2 + [-2; -10];

dh = 2 * [x(1) x(1); -x(2) x(2); x(3) x(3)];

g = []; dg = [];

and another to evaluate the Hessian of the Lagrangian.

function Lxx = hess2(x, lam, cost_mult)

if nargin < 3, cost_mult = 1; end %% allows to be used with 'fmincon'

mu = lam.ineqnonlin;

Lxx = cost_mult * [0 -1 0; -1 0 -1; 0 -1 0] + ...

[2*[1 1]*mu 0 0; 0 2*[-1 1]*mu 0; 0 0 2*[1 1]*mu];

Then create a problem struct with handles to these functions, a starting value for x
and an option to print the solver’s progress. Finally, pass this struct to nlps master

to solve the problem and print some of the return values to get the output below.

15Since the problem has nonlinear constraints and the Hessian is provided by hess fcn, this
function will never be called with three output arguments, so the code to compute d2f is actually
not necessary.

28

function nlps_master_ex2(alg)

if nargin < 1

alg = 'DEFAULT';

end

problem = struct(...

'f_fcn', @(x)f2(x), ...

'gh_fcn', @(x)gh2(x), ...

'hess_fcn', @(x, lam, cost_mult)hess2(x, lam, cost_mult), ...

'x0', [1; 1; 0], ...

'opt', struct('verbose', 2, 'alg', alg) ...

);

[x, f, exitflag, output, lambda] = nlps_master(problem);

fprintf('\nf = %g exitflag = %d\n', f, exitflag);

fprintf('\nx = \n');

fprintf(' %g\n', x);

fprintf('\nlambda.ineqnonlin =\n');

fprintf(' %g\n', lambda.ineqnonlin);

>> nlps_master_ex2

MATPOWER Interior Point Solver -- MIPS, Version 1.4, 08-Oct-2020

(using built-in linear solver)

it objective step size feascond gradcond compcond costcond

---- ------------ --------- ------------ ------------ ------------ ------------

0 -1 0 1.5 5 0

1 -5.3250167 1.6875 0 0.894235 0.850653 2.16251

2 -7.4708991 0.97413 0.129183 0.00936418 0.117278 0.339269

3 -7.0553031 0.10406 0 0.00174933 0.0196518 0.0490616

4 -7.0686267 0.034574 0 0.00041301 0.0030084 0.00165402

5 -7.0706104 0.0065191 0 1.53531e-05 0.000337971 0.000245844

6 -7.0710134 0.00062152 0 1.22094e-07 3.41308e-05 4.99387e-05

7 -7.0710623 5.7217e-05 0 9.84879e-10 3.41587e-06 6.05875e-06

8 -7.0710673 5.6761e-06 0 9.73527e-12 3.41615e-07 6.15483e-07

Converged!

f = -7.07107 exitflag = 1

x =

1.58114

2.23607

1.58114

lambda.ineqnonlin =

0

0.707107

29

To use a different solver such as fmincon, assuming it is available, simply specify it
in the alg option.

>> nlps_master_ex2('FMINCON')

First-order Norm of

Iter F-count f(x) Feasibility optimality step

0 1 -1.000000e+00 0.000e+00 1.000e+00

1 2 -5.718566e+00 0.000e+00 1.230e+00 1.669e+00

2 3 -8.395115e+00 1.875e+00 8.080e-01 8.259e-01

3 4 -7.034187e+00 0.000e+00 3.752e-02 2.965e-01

4 5 -7.050896e+00 0.000e+00 1.890e-02 5.339e-02

5 6 -7.071406e+00 4.921e-04 1.133e-03 2.770e-02

6 7 -7.070872e+00 0.000e+00 1.962e-04 2.332e-03

7 8 -7.071066e+00 0.000e+00 1.958e-06 2.418e-04

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the value of the optimality tolerance,

and constraints are satisfied to within the value of the constraint tolerance.

f = -7.07107 exitflag = 1

x =

1.58114

2.23607

1.58114

lambda.ineqnonlin =

1.08013e-06

0.707107

This example can be found in nlps master ex2.m. More example problems for
nlps master can be found in t nlps master.m, both in <MPOM>lib/t.

4.4 Nonlinear Equation Solvers – nleqs master

The nleqs master function provides a common nonlinear equation solver interface
for general nonlinear equations (NLEQ), that is, problems of the form:

f(x) = 0 (4.16)

where f : Rn → Rn.

30

This function can be used to solve the problem with any of the available solvers
by calling it as follows,

[x, f, exitflag, output, jac] = nleqs_master(fcn, x0, opt);

where the input and output arguments are described in Tables 4-9 and 4-10, respec-
tively. Alternatively, the input arguments can be packaged as fields in a problem

struct and passed in as a single argument, where the opt field is optional.

[x, f, exitflag, output, jac] = nleqs_master(problem);

The calling syntax for nleqs master is identical to that used by fsolve from the
Matlab Optimization Toolbox.

Table 4-9: Input Arguments for nleqs master

name description

fcn handle to function that evaluates the function f(x) and optionally its Jacobian J(x)
for a given value of x, with calling syntax:

f = fcn(x), or
[f, J] = fcn(x)

where selected solver algorithm determines whether fcn is required to return the
Jacobian or not

x0 starting value of vector x
opt optional options struct (all fields optional), see Table 4-11 for details
problem alternative, single argument input struct with fields corresponding to arguments

above

The nleqs master function is simply a master wrapper around corresponding
solver-specific functions, namely, nleqs newton, nleqs fd newton, nleqs gauss seidel

and nleqs fsolve. Each of these functions has an interface identical to that of
nleqs master.

There is also a more general function named nleqs core which takes an arbitrary,
user-defined update function. In fact, nleqs core provides the core implementation
for both nleqs newton and nleqs gauss seidel. See help nleqs core for details.

31

Table 4-10: Output Arguments for nleqs master†

name description

x solution vector
f final function value, f(x)
exitflag exit flag

1 – converged successfully
≤ 0 – solver-specific failure code

output output struct with the following fields:
alg – algorithm code of solver used

(others) – solver-specific fields
jac final value of Jacobian matrix

† All output arguments are optional.

4.4.1 NLEQ Example 1

The following code, included as nleqs master ex1.m in <MPOM>lib/t, shows a simple
example of using nleqs master to solve a 2-dimensional nonlinear function16

f(x) =

[
x1 + x2 − 1
−x2

1 + x2 + 5

]
(4.17)

First, create a function that will evaluate the f(x) and its Jacobian J(x) for a
given value of x.

function [f, J] = f1(x)

f = [x(1) + x(2) - 1;

-x(1)^2 + x(2) + 5];

if nargout > 1

J = [1 1; -2*x(1) 1];

end

Then, call the nleqs master function with a handle to that function and a starting
value for x.

>> x = nleqs_master(@f1, [0;0])

x =

2.0000

-1.0000

16https://www.chilimath.com/lessons/advanced-algebra/systems-non-linear-equations/

32

https://www.chilimath.com/lessons/advanced-algebra/systems-non-linear-equations/

Table 4-11: Options for nleqs master

name default description

alg 'DEFAULT' determines which solver to use
'DEFAULT' – automatic, current default is 'NEWTON'
'NEWTON' – Newton’s method
'CORE' – core algorithm, with arbitrary update function¶

'FD' – fast-decoupled Newton’s method†

'FSOLVE' – Matlab Opt Toolbox, fsolve*

'GS' – Gauss-Seidel method‡

verbose 0 amount of progress info to be printed
0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info

max it 0 maximum number of iterations§

tol 0 termination tolerance on f(x)§

core sp empty solver parameters struct for nleqs core¶

fd opt empty options struct for fast-decoupled Newton’s method,
nleqs fd newton†

fsolve opt empty options struct for fsolve*

gs opt empty options struct for Gauss-Seidel method, nleqs gauss seidel‡

newton opt empty options struct for Newton’s method, nleqs newton

* The fsolve function is included with GNU Octave, but on Matlab it is part of the Matlab Optimization
Toolbox. See Appendix B for more information on the Matlab Optimization Toolbox.

† Fast-decoupled Newton requires setting fd opt.jac approx fcn to a function handle that returns Jaco-
bian approximations. See help nleqs fd newton for more details.

‡ Gauss-Seidel requires setting gs opt.x update fcn to a function handle that updates x. See help

nleqs gauss seidel for more details.
§ A value of 0 indicates to use the solver’s own default.
¶ The opt.core sp field is required when alg is set to 'CORE'. See help nleqs core for details.

Or, alternatively, create a problem struct with a handle to the function, a starting
value for x and an option to print the solver’s progress. Then, pass this struct to
nleqs master to solve the problem and print some of the return values to get the
output below.

33

function nleqs_master_ex1(alg)

if nargin < 1

alg = 'DEFAULT';

end

problem = struct(...

'fcn', @f1, ...

'x0', [0; 0], ...

'opt', struct('verbose', 2, 'alg', alg) ...

);

[x, f, exitflag, output, jac] = nleqs_master(problem);

fprintf('\nexitflag = %d\n', exitflag);

fprintf('\nx = \n');

fprintf(' %2g\n', x);

fprintf('\nf = \n');

fprintf(' %12g\n', f);

fprintf('\njac =\n');

fprintf(' %2g %2g\n', jac');

>> nleqs_master_ex1

it max residual

---- ----------------

0 5.000e+00

1 3.600e+01

2 7.669e+00

3 1.056e+00

4 3.818e-02

5 5.795e-05

6 1.343e-10

Newton's method converged in 6 iterations.

exitflag = 1

x =

2

-1

f =

2.22045e-16

-1.34308e-10

jac =

1 1

-4 1

34

To use a different solver such as fsolve, assuming it is available, simply specify it in
the alg option.

>> nleqs_master_ex1('FSOLVE')

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

0 1 26 4 1

1 2 18.7537 1 3.65 1

2 3 9.28396 2.5 12.9 2.5

3 4 0.0148 1.30162 0.493 2.5

4 5 3.37211e-07 0.0340793 0.00232 3.25

5 6 1.81904e-16 0.000164239 5.39e-08 3.25

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the value of the function tolerance, and

the problem appears regular as measured by the gradient.

exitflag = 1

x =

2

-1

f =

0

-1.34872e-08

jac =

1 1

-4 1

4.4.2 NLEQ Example 2

The following code, included as nleqs master ex2.m in <MPOM>lib/t, shows another
simple example of using nleqs master to solve a 2-dimensional nonlinear function.17

This example includes the update function required for Gauss-Seidel and the Jaco-

17From Christi Patton Luks, https://www.youtube.com/watch?v=pJG4yhtgerg

35

https://www.youtube.com/watch?v=pJG4yhtgerg

bian approximation function required for the fast-decoupled Newton’s method.

f(x) =

[
x2

1 + x1x2 − 10
x2 + 3x1x

2
2 − 57

]
(4.18)

function [f, J] = f2(x)

f = [x(1)^2 + x(1)*x(2) - 10;

x(2) + 3*x(1)*x(2)^2 - 57];

if nargout > 1

J = [2*x(1)+x(2) x(1);

3*x(2)^2 6*x(1)*x(2)+1];

end

function JJ = jac_approx_fcn2()

J = [7 2; 27 37];

JJ = {J(1,1), J(2,2)};

function x = x_update_fcn2(x, f)

x(1) = sqrt(10 - x(1)*x(2));

x(2) = sqrt((57-x(2))/3/x(1));

function nleqs_master_ex2(alg)

if nargin < 1

alg = 'DEFAULT';

end

x0 = [1; 2];

opt = struct(...

'verbose', 2, ...

'alg', alg, ...

'fd_opt', struct(...

'jac_approx_fcn', @jac_approx_fcn2, ...

'labels', {{'P','Q'}}), ...

'gs_opt', struct('x_update_fcn', @x_update_fcn2));

[x, f, exitflag, output] = nleqs_master(@f2, x0, opt);

fprintf('\nexitflag = %d\n', exitflag);

fprintf('\nx = \n');

fprintf(' %2g\n', x);

fprintf('\nf = \n');

fprintf(' %12g\n', f);

36

Fast-decoupled Newton example results:

>> nleqs_master_ex2('FD')

iteration max residual max residual

block # f[P] f[Q]

------ ---- -------------- --------------

- 0 7.000e+00 4.300e+01

P 1 2.000e+00 3.100e+01

Q 1 3.243e-01 5.842e+00

P 2 5.367e-03 4.723e+00

Q 2 2.558e-01 4.767e-02

P 3 7.894e-04 1.012e+00

Q 3 5.417e-02 2.058e-03

P 4 3.606e-05 2.100e-01

Q 4 1.133e-02 8.642e-05

P 5 1.583e-06 4.374e-02

Q 5 2.363e-03 3.727e-06

P 6 6.892e-08 9.116e-03

Q 6 4.927e-04 1.617e-07

P 7 2.997e-09 1.901e-03

Q 7 1.027e-04 7.028e-09

P 8 1.303e-10 3.963e-04

Q 8 2.142e-05 3.055e-10

P 9 5.665e-12 8.262e-05

Q 9 4.466e-06 1.327e-11

P 10 2.451e-13 1.723e-05

Q 10 9.311e-07 5.969e-13

P 11 1.066e-14 3.591e-06

Q 11 1.941e-07 1.421e-14

P 12 0.000e+00 7.488e-07

Q 12 4.048e-08 7.105e-15

P 13 0.000e+00 1.561e-07

Q 13 8.439e-09 7.105e-15

Fast-decoupled Newton's method converged in 13 P- and 13 Q-iterations.

exitflag = 1

x =

2

3

f =

8.43887e-09

-7.10543e-15

37

Gauss-Seidel example results:

>> nleqs_master_ex2('GS')

it max residual

---- ----------------

0 4.300e+01

1 5.201e+00

2 1.690e+00

3 6.481e-01

4 2.141e-01

5 7.413e-02

6 2.523e-02

7 8.638e-03

8 2.951e-03

9 1.009e-03

10 3.449e-04

11 1.179e-04

12 4.030e-05

13 1.378e-05

14 4.709e-06

15 1.610e-06

16 5.503e-07

17 1.881e-07

18 6.430e-08

19 2.198e-08

20 7.513e-09

Gauss-Seidel method converged in 20 iterations.

exitflag = 1

x =

2

3

f =

-7.51313e-09

4.48558e-09

38

4.5 Parameterized Nonlinear Equation Solver – pnes master

Continuation methods or branch tracing methods can be used to trace, beginning
from an initial solution point, a curve of solutions to a parameterized system of
nonlinear equations of the form

f(x) = 0, (4.19)

where f : Rn+1 → Rn.
The pnes master function provides a common parameterized nonlinear equation

solver interface for general parameterized nonlinear equations (PNE). The current
implementation assumes that the function f(x) arises from a parameterization, such
as a homotopy, where the scalar parameter λ is by convention the last element of x.
If we denote the first n elements of x as y, we have

x =

[
y
λ

]
(4.20)

In a typical application, we may have nonlinear functions g0, g : Rn → Rn, where
we have a known solution y0 to the equation g0(y) = 0, but a good starting point for
finding the solution to g(y) = 0 is not available. In this case, we can define f(x) as
a homotopy with parameter λ,

f(x) = (1− λ)g0(y) + λg(y), (4.21)

and use a continuation method to trace a solution curve from y0 and λ = 0 to y∗

and λ = 1, where y∗ is the desired solution to g(y) = 0.
Currently MP-Opt-Model includes only a single solver implementation for PNE

problems based on a numerical continuation method commonly known as a predictor-
corrector method [8]. This method involves adding another equation to the system
which identifies the location of the current solution with respect to the previous or
next solution. The continuation process can be diagrammatically shown by (4.22).

xj
Predictor−−−−−→ x̂j+1 Corrector−−−−−→ xj+1 (4.22)

where, xj represents the current solution at step j, x̂j+1 is the predicted solution for
the next step, and xj+1 is the next solution on the curve.

4.5.1 Parameterization

The values of x along the solution curve can parameterized in a number of ways
[9, 10]. Parameterization is a mathematical way of identifying each solution so that

39

the next solution or previous solution can be quantified. MP-Opt-Model includes
three parameterization scheme options to quantify this relationship, detailed below,
where σ is the continuation step size parameter and λ is the last element of x.

• Natural parameterization simply uses λ directly as the parameter, so the
new λ is simply the previous value plus the step size.

pj(x) = λ− λj − σj = 0 (4.23)

• Arc length parameterization results in the following relationship, where
the step size is equal to the 2-norm of the distance from one solution to the
next.

pj(x) =
∑
i

(xi − xji)2 − (σj)2 = 0 (4.24)

• Pseudo arc length parameterization [11] is MP-Opt-Model’s default pa-
rameterization scheme, where the next point x on the solution curve is con-
strained to lie in the hyperplane running through the predicted solution x̂j+1

orthogonal to the tangent line from the previous corrected solution xj. This
relationship can be quantified by the function

pj(x) =
(
x− xj

)T
z̄j − σj = 0, (4.25)

where z̄j is the normalized tangent vector at xj and σj is the continuation step
size parameter.

4.5.2 Predictor

The predictor is used to produce an estimate for the next solution. The better the
prediction, the faster is the convergence to the solution point. MP-Opt-Model uses
a tangent predictor for estimating the curve to the next solution. At step j, the
tangent vector zj at the current solution xj is found by solving the linear system[

∂f
∂x

∂pj−1

∂x

]
zj =

[
0
1

]
. (4.26)

The matrix on the left-hand side is simply the Jacobian of f(x) with an additional
row added. The extra row, required to make the system non-singular and define the
magnitude of zj, is the derivative of pj−1(x), the parameterization function from the
previous step.

40

The resulting tangent vector is then normalized

z̄j =
zj

||zj||2
(4.27)

and used to compute the predicted approximation x̂j+1 to the next solution xj+1

using
x̂j+1 = xj + σj z̄j, (4.28)

where σj is the continuation step size.

4.5.3 Corrector

The corrector stage at step j finds the next solution xj+1 by correcting the approxi-
mation x̂j+1 estimated by the predictor. A method such as Newton’s method is used
to find the next solution by solving the n + 1 dimensional system in (4.29), where
one of (4.23)–(4.25) has been added as an additional constraint to the parameterized
nonlinear equations of (4.19). [

f(x)
pj(x)

]
= 0 (4.29)

The corrector in MP-Opt-Model uses nleqs master with its variety of avaiable
solvers to solve (4.29) for each new solution point on the curve.

4.5.4 Step Length Control

Step length control is a key element affecting the computational efficiency of a con-
tinuation method. It affects the continuation method with two issues: (1) speed –
how fast the corrector converges to a specified accuracy, and (2) robustness – whether
the corrector converges to a true solution given a predicted point. MP-Opt-Model’s
numerical continuation can optionally use adaptive steps, where the step size σ is
adjusted by a scaling factor α within specified limits.

σj+1 = αjσj, σmin ≤ σj+1 ≤ σmax (4.30)

This scaling factor αj for step j is limited to a maximum of 2 and is calculated from
an error estimation between the predicted and corrected solutions γj as follows,

αj = 1 + β

(
ε

γj
− 1

)
, αj ≤ 2, (4.31)

where β is a damping factor, ε is a specified tolerance, and γj is given by

γj =
∥∥xj+1 − x̂j+1

∥∥
∞ . (4.32)

41

4.5.5 Event Detection and Location

A numerical continuation event is triggered when the value of one of the elements
of an event function changes sign from one continuation step to the next. The
event occurs at the point where the corresponding value of the event function passes
through zero. MP-Opt-Model provides event functions to detect the location at
which the continuation curve reaches the following:

• a specified target λ value

• a limit or nose point

• the end of a full trace

Each event function is registered with an event name, a flag indicating whether
or not the location of the event should be pinpointed, and if so, to within what
tolerance. For events that are to be located, when an event interval is detected, that
is, when an element of the event function value changes sign, MP-Opt-Model adjusts
the continuation step size via a False Position or Regula Falsi method until it locates
the point of the zero-crossing to within the specified tolerance.

The detection of an event zero, or even an event interval, can be used to trigger
further actions. MP-Opt-Model includes a callback functionality that can be used to
handle events. For example, the numerical continuation termination for nose point,
target λ or full trace modes are all based on callback functions in conjunction with
event detection.

User-defined event detection functions for pnes master can be provided via the
events option.

4.5.6 Callback Functions

MP-Opt-Model’s continuation method provides a callback mechanism to give the
user access to the iteration process for executing custom code at each iteration, for
example, to implement custom incremental plotting of a solution curve or to handle a
detected event. This callback mechanism is used internally to handle default plotting
functionality as well as to handle termination events. The pne callback default

function, for example, is collects the λ and x results from each predictor and corrector
iteration and optionally plots the continuation curve.

The prototype for a pnes master callback function is

function [nx, cx, s] = pne_callback_user(k, nx, cx, px, s, opt)

42

and the input and output arguments are described in Tables 4-12 through 4-14 and
in the help for pne callback default. Each registered callback function is called in
three different contexts, distinguished by the value of the first argument k as follows:

1. initial – called with k = 0, after initial solution, before first continuation step

2. iterations – called with k > 0, at each iteration, after predictor-corrector step

3. final – called with k < 0, after exiting predictor-corrector loop, inputs identical
to last iteration call, except k negated

Table 4-12: Callback Input Arguments

name description

k continuation step iteration count
cx current continuation state*, corresponding to most recent successful step
nx next continuation state*, corresponding to proposed next step
px previous continuation state*, corresponding to last step prior to cx

s container struct with various flags, etc, with fields:
.done termination flag, 1 → terminate, 0 → continue
.done msg char array containing reason for termination
.warmstart struct with information needed for warm-starting a continuation problem‡

.rollback scalar flag to indicate that the current step should be rolled back and
retried with a different step size, etc.

.events struct array listing any events detected for this step‡

.results current value of results struct whose fields are to be included in the output
struct returned by pnes master

opt pnes master options struct

* See Table 4-14 for details of the continuation state.
† See Table 4-19 for details.
‡ See pne detect events for details of the events field.

43

Table 4-13: Callback Output Arguments

name description

All are updated versions of the corresponding input arguments, see Table 4-12 for more details.
cx current continuation state*, update values in cx such as this step or

this parm if s.rollback is true
nx next continuation state*, update values in this state if s.rollback is false
s container struct with various flags, etc, with fields:
.done callback may set this to request termination
.done msg callback may assign the reason for termination
.warmstart callback may create this field to prepare for a subsequent warm-started

call to pnes master†

.rollback callback can request a rollback step, even if it was not indicated by an
event function‡

.events msg field for a given event may be updated§

.results updated version of results struct whose fields are to be included in the
output struct returned by pnes master

* See Table 4-14 for details of the continuation state.
† See Table 4-19 for details.
‡ In this case, the callback should also modify the step size or parameterization to be used for the re-try, by

setting the this step or this parm fields in cx.
§ See pne detect events for details of the events field.

Table 4-14: Fields of Continuation State Struct

name description

x hat solution vector from predictor
x solution vector from corrector
z normalized tangent vector, z̄
default step default step size
default parm handle to function implementing parameterization used by default*

this step step size for this step only
this parm handle to function implementing parameterization used for this step only*

step current step size
parm handle to function implementing current parameterization*

events event log, struct array, see pne detect events for details
cbs callback state, callback functions may add fields containing any information

the function would like to pass from one invokation to the next, taking care
not to step on fields being used by other callbacks, such as the 'default'
field used by pne callback default.

efv cell array of event function values

* Typically a handle to one of pne pfcn natural, pne pfcn arc len, or pne pfcn pseudo arc len.

44

The user can define their own callback functions which take the same form and
are called in the same contexts as pne callback default. User callback functions are
included via the callbacks option to pnes master. This option takes a single callback
specification or a cell array of them if defining multiple callbacks, where a callback
specification takes one of the following forms: fcn, {fcn}, or {fcn, priority}.

• fcn - function handle to the callback function

• priority - numerical value specifying callback priority,18 default = 20

User-defined callback functions for pnes master can be provided via the callbacks
option.

18See pne register callbacks for details.

45

4.5.7 pnes master

This function can be used to trace the parameterized solution curve with any of the
available solvers19 by calling it as follows,

[x, f, exitflag, output, jac] = pnes_master(fcn, x0, opt);

where the input and output arguments are described in Tables 4-15 and 4-16, re-
spectively. Alternatively, the input arguments can be packaged as fields in a problem

struct and passed in as a single argument, where the opt field is optional.

[x, f, exitflag, output, jac] = pnes_master(problem);

Table 4-15: Input Arguments for pnes master

name description

fcn handle to function that evaluates the function f(x) and its Jacobian J(x) for a given
value of x, with calling syntax:

f = fcn(x), or
[f, J] = fcn(x)

where f is n× 1, x is (n+ 1)× 1, and J is n× (n+ 1).
x0 starting value of vector x
opt optional options struct (all fields also optional), see Table 4-17 for details
problem alternative, single argument input struct with fields corresponding to arguments

above

19The current implementation includes only a single solver based on a predictor-corrector con-
tinuation method.

46

Table 4-16: Output Arguments for pnes master†

name description

x solution vector
f final function value, f(x)
exitflag exit flag

1 – converged successfully
≤ 0 – solver-specific failure code

output output struct with the following fields:
corrector output return value from nleqs master from final corrector run, see Table 4-10

for details
iterations N , total number of continuation steps performed
events struct array of size ne of events detected, with the following fields:

k continuation step at which event was located
name name of detected event
idx index(es) of critical element(s) in corresponding event function
msg descriptive text detailing the event

done msg message describing cause of continuation termination
steps (N + 1) row vector of stepsizes taken at each continuation step

lam hat (N + 1) row vector of λ̂ values from prediction steps
lam (N + 1) row vector of λ values from correction steps
max lam maximum value of parameter λ (from output.lam)
warmstart optional output with information needed for warm-starting an updated contin-

uation problem, see Table 4-19 for details
x hat‡ n× (N + 1) matrix of solution values from prediction steps
x‡ n× (N + 1) matrix of solution values from correction steps

(others) depends on opt.output fcn, a custom output function can add arbitrary fields
to output

jac final value of Jacobian matrix

† All output arguments are optional.
‡ This field is created by the default output function and may not be present if using a custom output function

defined by opt.output fcn.

47

Table 4-17: Options for pnes master

name default description

alg 'DEFAULT' determines which solver to use*

verbose 0 amount of progress info to be printed
0 – print no progress info

1–5 – print increasing level of progress info
nleqs opt empty options struct for nleqs master used for corrector stage, see

Table 4-11 for details
solve base 1 0/1 flag that determines whether or not to run a corrector

stage for initial solution point, x0
parameterization 3 choice of parameterization

1 – natural
2 – arc length
3 – pseudo arc length

stop at 'NOSE' determines stopping criterion
'NOSE' – stop when limit or nose point is reached
'FULL' – trace full continuation curve
λstop – numeric, stop upon reaching target λ value λstop

max it 2000 maximum number of continuation steps
step 0.05 continuation step size
adapt step 0 toggle adaptive step size feature

0 – adaptive step size disabled
1 – adaptive step size enabled

adapt step damping 0.7 damping factor β from (4.31) for adaptive step sizing
adapt step tol 10−3 tolerance ε from (4.31) for adaptive step sizing
adapt step ws 1 scale factor for default initial step size when warm-starting

with adaptive step size enabled
step min 10−4 minimum allowed continuation step size, σmin from (4.30)
step max 0.2 maximum allowed continuation step size, σmax from (4.30)
default event tol 10−3 default tolerance for event functions
target lam tol 0 tolerance for target λ detection†

nose tol 0 tolerance for nose point detection†

events empty cell array of specs for user-defined event functions‡

callbacks empty cell array of specs for user-defined callback functions§

output fcn empty custom output function called by pne callback default()

plot – struct of options to contol plotting of continuation curve by
pne callback default(), see Table 4-18 for details

warmstart empty struct with information needed for warm-starting a continua-
tion problem, see Table 4-19 for details

* Currently 'DEFAULT' is the only option.
† A value of 0 means use the value of default event tol.
‡ Passed as my events arg to pne register events(). For details see help pne register events.
§ Passed as my cbacks arg to pne register callbacks(). For details see help pne register callbacks and help

pne callback default.

48

Table 4-18: Plot Options for pnes master*

name default description

level 0 control plotting of continuation curve
0 – do not plot continuation curve
1 – plot when completed
2 – plot incrementally at each continuation step
3 – same as 2, with pause at each step

idx empty index of quantity to plot, passed to yfcn()

idx default empty function to provide default value for idx, if none
provided

xname 'lam' name of field in output holding values that de-
termine horizontal coordinates of plot

yname 'x' name of field in output holding values that de-
termine vertical coordinates of plot

xfcn @(x)x handle to function that maps a value from the
indicated field of output to a horizontal coordi-
nate for plotting†

yfcn @(y,idx)y(idx, :) handle to function that maps a value from the
indicated field of output and an index to be
applied to that value to a vertical coordinate
for plotting†

xlabel '\lambda' label for horizontal axis
ylabel 'Variable Value' label for vertical axis
title 'Value of Variable %d' plot title used for plot of single variable§

title2 'Value of Multiple Variables' plot title used for plot of multiple variables
legend 'Variable %d' legend label§

* Defines the fields for optional input opt.plot.
† Relevant field is indicated by the value of opt.plot.xname.
‡ Relevant field is indicated by the value of opt.plot.yname.
§ Can use %d as placeholder for index idx of quantity to plot.

49

Table 4-19: Warm-start Data for pnes master*

name description

cont steps current value of continuation step counter
direction +1 or −1, for tracing of curve in same or opposite direction,

respectively
dir from jac eigs 0/1 flag to indicate whether to use the sign of the smallest

eigenvalue of the Jacobian to determine the initial direction
x current solution vector
z current tangent vector
xp previous step solution vector
zp previous step tangent vector
parm function handle for current parameterization function
default parm function handle for default parameterization fcn
default step default step size
events current event log, same as output.events

cbs struct containing user-defined callback state

* Defines the fields for optional input opt.warmstart and optional output output.warmstart.

50

4.5.8 PNE Example

The following code is a simplified version of the example included as pne ex1.m

in <MPOM>lib/t. It illustrates the use of pnes master to solve a 2-dimensional
parameterized nonlinear function of 3 variables.20 Recall that x3, the last element of
x, corresponds to the parameter λ.

f(x) =

[
x1 + x2 + 6x3 − 1
−x2

1 + x2 + 5

]
(4.33)

First, create a function that will evaluate the f(x) and its Jacobian J(x) for a
given value of x.

function [f, J] = f1p(x)

f = [x(1) + x(2) + 6*x(3) - 1;

-x(1)^2 + x(2) + 5];

if nargout > 1

J = [1 1 6; -2*x(1) 1 0];

end

Then, call the pnes master function with a handle to that function, a starting value
for x, and an option to make it trace the full continuation curve.

>> x = pnes_master(@f1p, [-1;0;0], struct('stop_at', 'FULL'))

x =

2.0000

-1.0000

0

Or, alternatively, create a problem struct to encapsulate the 3 inputs. Here we
include additional options for verbose output and some plot options to make it plot
the continuation curves for the first 2 variables. Then, pass this struct to pnes master

to solve the problem and print some of the return values to produce the output below
and the plot shown in Figure 4-1.

20Based on a similar problem from https://www.chilimath.com/lessons/advanced-algebra/

systems-non-linear-equations/.

51

https://www.chilimath.com/lessons/advanced-algebra/systems-non-linear-equations/
https://www.chilimath.com/lessons/advanced-algebra/systems-non-linear-equations/

function pne_ex1

opt = struct('verbose', 2, 'stop_at', 'FULL', 'step', 0.6);

opt.plot = struct('level', 2, 'idx', 1:2, ...

'title2', 'PNE Continuation Example', 'legend', 'x_%d');

problem = struct('fcn', @f1p, 'x0', [-1;0;0], 'opt', opt);

[x, f, exitflag, output, jac] = pnes_master(problem);

fprintf('\nexitflag = %d\n', exitflag);

fprintf('output.max_lam = %g\n', output.max_lam);

fprintf('\nx = \n');

fprintf('%4g\n', x);

fprintf('\nf = \n');

fprintf('%13g\n', f);

fprintf('\njac =\n');

fprintf('%4g%4g%4g\n', jac');

Figure 4-1: Continuation Curve for PNE Example

52

>> pne_ex1

MP-Opt-Model Version 4.0, 18-Oct-2021 -- Predictor/Corrector Continuation Method

step 0 : lambda = 0.000, 6 corrector steps

step 1 : PAL stepsize = 0.6 lambda = 0.081 2 corrector steps

step 2 : PAL stepsize = 0.6 lambda = 0.162 2 corrector steps

step 3 : PAL stepsize = 0.6 lambda = 0.241 2 corrector steps

step 4 : PAL stepsize = 0.6 lambda = 0.320 2 corrector steps

step 5 : PAL stepsize = 0.6 lambda = 0.398 2 corrector steps

step 6 : PAL stepsize = 0.6 lambda = 0.475 2 corrector steps

step 7 : PAL stepsize = 0.6 lambda = 0.551 2 corrector steps

step 8 : PAL stepsize = 0.6 lambda = 0.625 2 corrector steps

step 9 : PAL stepsize = 0.6 lambda = 0.697 2 corrector steps

step 10 : PAL stepsize = 0.6 lambda = 0.767 2 corrector steps

step 11 : PAL stepsize = 0.6 lambda = 0.835 2 corrector steps

step 12 : PAL stepsize = 0.6 lambda = 0.898 2 corrector steps

step 13 : PAL stepsize = 0.6 lambda = 0.956 2 corrector steps

step 14 : PAL stepsize = 0.6 lambda = 1.005 3 corrector steps

step 15 : PAL stepsize = 0.6 lambda = 1.038 3 corrector steps

step 16 : PAL stepsize = 0.6 lambda = 1.024 3 corrector steps

step 17 : PAL stepsize = 0.6 lambda = 0.863 3 corrector steps

step 18 : PAL stepsize = 0.6 lambda = 0.726 3 corrector steps

step 19 : PAL stepsize = 0.6 lambda = 0.595 3 corrector steps

step 20 : PAL stepsize = 0.6 lambda = 0.468 2 corrector steps

step 21 : PAL stepsize = 0.6 lambda = 0.343 2 corrector steps

step 22 : PAL stepsize = 0.6 lambda = 0.221 2 corrector steps

step 23 : PAL stepsize = 0.6 lambda = 0.100 2 corrector steps

step 24a : PAL stepsize = 0.6 lambda = -0.019 2 corrector steps ^ ROLLBACK

step 24 : NAT stepsize = 0.1 lambda = 0.000 3 corrector steps

CONTINUATION TERMINATION: Traced full continuation curve in 24 continuation steps

exitflag = 1

output.max_lam = 1.03783

x =

2

-1

0

f =

0

-6.4837e-13

jac =

1 1 6

-4 1 0

53

5 Optimization Model Class – opt model

The opt model class provides facilities for constructing an optimization problem by
adding and managing the indexing of sets of variables, constraints and costs. The
model can then be solved by simply calling the solve method which automatically se-
lects and calls the appropriate master solver function, i.e. qps master, miqps master,
nlps master, nleqs master or mplinsolve, depending on the type of problem.

In this manual, and in the code, om is the name of the variable used by con-
vention for the optimization model object, which is typically created by calling the
constructor opt model with no arguments.

om = opt_model;

Variables, constraints and costs can then be added to the model using named
sets. For variables and constraints, each set represents a column vector, and the sets
are stacked in the order they are added to construct the full optimization variable
or full constraint vector. For costs, each set represents a component of a scalar cost,
and the components are summed together to construct the full objective function
value.

5.1 Adding Variables

om.add_var(name, N);

om.add_var(name, N, v0);

om.add_var(name, N, v0, vl);

om.add_var(name, N, v0, vl, vu);

om.add_var(name, N, v0, vl, vu, vt);

om.add_var(name, idx_list, N ...);

A named set of variables is added to the model using the add var method, where
name is a string containing the name of the set21, N is the number n of variables in
the set, v0 is the initial value of the variables, vl and vu are the upper and lower
bounds on the variables, and vt is the variable type. The accepted values for vt are:

• 'C' – continuous
• 'I' – integer
• 'B' – binary, i.e. 0 or 1

21A set name must be a valid field name for a struct.

54

The inputs v0, vl and vu are n × 1 column vectors, vt is a scalar or a 1 × n row
vector. The defaults for the last four arguments, which are all optional, are for all to
be continuous, unbounded and initialized to zero. That is, v0, vl, vu, and vt default
to 0, −∞, +∞, and 'C', respectively.

For example, suppose our problem has variables u, v and w, which are vectors of
length nu, nv, and nw, respectively, where u is unbounded, v is non-negative and the
lower and upper bounds on w are given in the vectors wlb and wub. Let us further
suppose that the initial value of w is provided in w0 and the first 3 elements of w are
binary variables. And we will assume that the values of nu, nv, and nw are available
in the variables nu, nv and nw, respectively.

We can then add these variable sets to the model with the names u, v, and w,
as follows:

wtype = repmat('C', 1, nw); wt(1:3) = 'B';

om.add_var('u', nu);

om.add_var('v', nv, [], 0);

om.add_var('w', nw, w0, wlb, wub, wtype);

In this case, then, the full optimization vector is the (nu + nv + nw)× 1 vector

x =

 u
v
w

 . (5.1)

See Section 5.7 for details on indexed named sets and the idx list argument.

5.1.1 Variable Subsets

A key feature of MP-Opt-Model is that each set of constraints or costs can be defined
in terms of the relevant variables only, as opposed to the entire optimization vec-
tor x. This is done by specifying a variable subset, a cell array of the variable names
of interest, in the varsets argument. Besides simplifying the constraint and cost
definitions, another benefit of this approach is that it allows a model to be modified
with new variables after some constraints and costs have already been added.

In the sections to follow, we will use the following two variable subsets for illus-
tration purposes:

• {'v'} corresponding to x1 ≡ v, and

• {'u', 'w'} corresponding to x2 ≡
[
u
w

]
.

55

5.2 Adding Constraints

A named set of constraints can be added to the model as soon as the variables
on which it depends have been added. MP-Opt-Model currently supports three
types of constraints, doubly-bounded linear constraints, general nonlinear equality
constraints, and general nonlinear inequality constraints.

5.2.1 Linear Constraints

om.add_lin_constraint(name, A, l, u);

om.add_lin_constraint(name, A, l, u, varsets);

om.add_lin_constraint(name, idx_list, A ...);

In MP-Opt-Model, linear constraints take the form

l ≤ Ax ≤ u, (5.2)

where x here refers to either the full optimization vector (default), or the vector
obtained by stacking the subset of variables specified in varsets. Here A contains
the nA × nx matrix A and l and u are the nA × 1 vectors l and u.22

For example, suppose our problem has the following three sets of linear con-
straints,

l1 ≤A1x1 ≤ u1 (5.3)

l2 ≤A2x2 (5.4)

A3x ≤ u3, (5.5)

where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization vector
from (5.1). Notice that the number of columns in A1 and A2 correspond to nv and
nu + nw, respectively, whereas A3 has the full set of columns corresponding to x.

These three linear constraint sets can be added to the model with the names
lincon1, lincon2, and lincon3, using the add lin constraint method as follows:

om.add_lin_constraint('lincon1', A1, l1, u1, {'v'});

om.add_lin_constraint('lincon2', A2, l2, [], {'u', 'w'});

om.add_lin_constraint('lincon3', A3, [], u3);

See Section 5.7 for details on indexed named sets and the idx list argument.

22The A matrix can be sparse.

56

5.2.2 General Nonlinear Constraints

om.add_nln_constraint(name, N, iseq, fcn, hess);

om.add_nln_constraint(name, N, iseq, fcn, hess, varsets);

om.add_nln_constraint(name, idx_list, N ...);

MP-Opt-Model allows the user to implement general nonlinear constraints of the
form

g(x) = 0, or (5.6)

g(x) ≤ 0 (5.7)

by providing the handle fcn of a function that evaluates the constraint and its Jaco-
bian and another handle hess of a function that evaluates the Hessian. The number
of constraints in the set is given by N, and iseq is set to 1 to specify an equality
constraint or 0 for an inequality.

The calling syntax for fcn is:

g = fcn(x);

[g, dg] = fcn(x);

Here g is the ng × 1 vector g(x) and dg is the ng × nx Jacobian matrix J(x), where
Jij = ∂gi

∂xj
.

Rather than computing the full three-dimensional Hessian, the hess function
actually evaluates the Jacobian of the vector JT(x)λ for a specified value of the
vector λ. The calling syntax for hess is:

d2g = hess(x, lambda);

For both functions, the first input argument x takes one of two forms. If the
constraint set is added with varsets empty or missing, then x will be the full op-
timization vector. Otherwise it will be a cell array of vectors corresponding to the
variable sets specified in varsets.

There is also the option for name to be a cell array of constraint set names, in
which case N is a vector, specifying the number of constraints in each corresponding
set. In this case, fcn and hess are each still a single function handle, but the
values computed by each correspond to the entire stacked collection of constraint
sets together, as if they were a single set.

57

For example, suppose our problem has the following three sets of nonlinear con-
straints,

g1(x1) ≤ 0 (5.8)

g2(x2) = 0 (5.9)

g3(x) ≤ 0, (5.10)

where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization vector
from (5.1). Let my cons fcn1, my cons fcn2, and my cons fcn3 be functions that
evaluate g1(x1), g2(x2), and g3(x) and their gradients, respectively. Similarly, let
my cons hess1, my cons hess2, and my cons hess3 be Hessian evaluation functions
for the same. The variables ng1, ng2, and ng3 contain the number of constraints in
the respective constraint sets.

These three nonlinear constraint sets can be added to the model with the names
nlncon1, nlncon2, and nlncon3, using the add nln constraint method as follows:

fcn1 = @(x)my_cons_fcn1(x, <other_args>);

fcn2 = @(x)my_cons_fcn2(x, <other_args>);

fcn3 = @(x)my_cons_fcn3(x, <other_args>);

hess1 = @(x, lambda)my_cons_hess1(x, lambda, <other_args>);

hess2 = @(x, lambda)my_cons_hess2(x, lambda, <other_args>);

hess3 = @(x, lambda)my_cons_hess3(x, lambda, <other_args>);

om.add_nln_constraint('nlncon1', ng1, 0, fcn1, hess1 {'v'});

om.add_nln_constraint('nlncon2', ng2, 1, fcn2, hess2, {'u', 'w'});

om.add_nln_constraint('nlncon3', ng3, 0, fcn3, hess3);

In this case, the x variable passed to the my cons fcn and my cons hess functions will
be as follows:

• my cons fcn1, my cons hess1 −→ x = {v}
• my cons fcn2, my cons hess2 −→ x = {u,w}
• my cons fcn3, my cons hess3 −→ x = [u; v;w]

See Section 5.7 for details on indexed named sets and the idx list argument.

5.3 Adding Costs

The objective of an MP-Opt-Model optimization problem is to minimize the sum
of all costs added to the model. As with constraints, a named set of costs can be
added to the model as soon as the variables on which it depends have been added.
MP-Opt-Model currently supports two types of costs, quadratic costs and general
nonlinear costs.

58

5.3.1 Quadratic Costs

om.add_quad_cost(name, Q, c);

om.add_quad_cost(name, Q, c, k);

om.add_quad_cost(name, Q, c, k, varsets);

om.add_quad_cost(name, idx_list, Q ...);

A quadratic cost set takes the form:

f(x) =
1

2
xTQx+ cTx+ k (5.11)

where x here refers to either the full optimization vector (default), or the vector
obtained by stacking the subset of variables specified in varsets. Here Q contains
the nx × nx matrix Q, c the nx × 1 vector c, and k the scalar k.23

Alternatively, if Q is an nx×1 vector or empty, then f(x) is also an nx×1 vector,
k can be nx × 1 or scalar, and the i-th element of f(x) is given by

fi(x) =
1

2
Qix

2
i + cixi + ki. (5.12)

where ki = k for all i if k is scalar.
For example, suppose our problem has the following three sets of quadratic costs,

q1(x1) =
1

2
x1

TQ1x1 + c1
Tx1 + k1 (5.13)

q2(x2) =
1

2
x2

TQ2x2 + c2
Tx2 + k2 (5.14)

q3(x) =
1

2
xTQ3x+ c3

Tx+ k3, (5.15)

where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization vector
from (5.1). Notice that the dimensions of Q1 and Q2 (and c1 and c2) correspond to
nv and nu + nw, respectively, whereas Q3 (and c3) correspond to the full x.

These three quadratic cost sets can be added to the model with the names qcost1,
qcost2, and qcost3, using the add quad cost method as follows:

om.add_quad_cost('qcost1', Q1, c1, k1, {'v'});

om.add_quad_cost('qcost2', Q2, c2, k2, {'u', 'w'});

om.add_quad_cost('qcost3', Q3, c3, k3);

See Section 5.7 for details on indexed named sets and the idx list argument.

23The Q matrix can be sparse.

59

5.3.2 General Nonlinear Costs

om.add_nln_cost(name, N, fcn);

om.add_nln_cost(name, N, fcn, varsets);

om.add_nln_cost(name, idx_list, N ...);

MP-Opt-Model allows the user to implement a general nonlinear cost by providing
the handle fcn of a function that evaluates the cost f(x), its gradient and Hessian
H, as described below. The N parameter specifies the dimension for vector valued
cost functions, which are not yet implemented. Currently N must equal 1 or it will
throw an error.

For a cost function f(x), fcn should point to a function with the following inter-
face:

f = fcn(x)

[f, df] = fcn(x)

[f, df, d2f] = fcn(x)

where f is a scalar with the value of the function f(x), df is the 1 × nx gradient of
f , and d2f is the nx × nx Hessian H, where nx is the number of elements in x.

The first input argument x takes one of two forms. If the constraint set is added
with varsets empty or missing, then x will be the full optimization vector. Otherwise
it will be a cell array of vectors corresponding to the variable sets specified in varsets.

For example, suppose our problem has three sets of nonlinear costs, f1(x1), f2(x2),
f3(x), where x1 and x2 are as defined in Section 5.1.1 and x is the full optimization
vector from (5.1). Let my cost fcn1, my cost fcn2, and my cost fcn3 functions that
evaluate f1(x), f2(x), and f3(x) and their gradients and Hessians, respectively.

These three nonlinear cost sets can be added to the model with the names nl-
ncost1, nlncost2, and nlncost3, using the add nln cost method as follows:

fcn1 = @(x)my_cost_fcn1(x, <other_args>);

fcn2 = @(x)my_cost_fcn2(x, <other_args>);

fcn3 = @(x)my_cost_fcn3(x, <other_args>);

om.add_nln_cost('nlncost1', 1, fcn1 {'v'});

om.add_nln_cost('nlncost2', 1, fcn2, {'u', 'w'});

om.add_nln_cost('nlncost3', 1, fcn3);

In this case, the x variable passed to the my cost fcn functions will be as follows:
• my cost fcn1 −→ x = {v}
• my cost fcn2 −→ x = {u,w}
• my cost fcn3 −→ x = [u; v;w]

See Section 5.7 for details on indexed named sets and the idx list argument.

60

5.4 Solving the Model

om.solve()

[x, f, exitflag, output, jac] = om.solve()

[x, f, exitflag, output, lambda] = om.solve(opt)

[...] = om.solve(opt)

After all variables, constraints and costs have been added to the model, the opti-
mization problem can be solved simply by calling the solve method. This method au-
tomatically selects and calls, depending on the problem type, mplinsolve or one of the
master solver interface functions from Section 4, namely qps master, miqps master,
nlps master, nleqs master, or pnes master. Note that one of the equation solvers is
chosen if the model has no costs and no inequality constraints. In this case, if the
number of variables is equal to the number of equality constraints, mplinsolve or
nleqs master is selected. If the number of variables is one more than the number of
constraints pnes master is chosen.

The results are stored in the soln field (see Section 5.5.5) of the MP-Opt-Model
object and can be returned in the optional output arguments. The input options
struct opt, summarized in Tables 5-1 and 5-2, is optional, as are all of its fields. For
details on the return values see the descriptions of the individual solver functions
in Sections 4.1, 4.2, 4.3, 4.4, and 4.5. For linear equations, the solver and opt

arguments for mplinsolve, described in Section 4.1 of the MIPS User’s Manual, can
be provided in the respective fields of opt.leq opt.

61

https://matpower.org/docs/MIPS-manual-1.4.pdf#subsection.4.1
https://matpower.org/docs/MIPS-manual-1.4.pdf

Table 5-1: Options for solve

name default description

alg 'DEFAULT' determines which solver to use, see Table 5-2
verbose 1 amount of progress info to be printed

0 – print no progress info
1–5 – print increasing level of progress info

parse soln 0 flag that specifies whether or not to call the parse soln

method and place the return values in om.soln

x0 empty optional initial value of x, overrides value stored in model,
(ignored by some solvers)

Additional Options for Specific Problem Types
LP/QP see Table 4-3
MILP/MIQP see Table 4-5
NLP see Table 4-8
LEQ see Section 4.1 of the MIPS User’s Manual
leq opt.solver '' see help mplinsolve, input argument solver
leq opt.opt empty see help mplinsolve, input argument opt

NLEQ see Table 4-11
PNE see Table 4-17

62

https://matpower.org/docs/MIPS-manual-1.4.pdf#subsection.4.1
https://matpower.org/docs/MIPS-manual-1.4.pdf

Table 5-2: Values for alg Option to solve

alg value problem type(s) description

'DEFAULT' all automatic, depends on problem type, uses first available of:
LP Gurobi, CPLEX, MOSEK, linprog,¶, GLPK, BPMPD, MIPS
QP Gurobi, CPLEX, MOSEK, quadprog¶, BPMPD, MIPS

MILP Gurobi, CPLEX, MOSEK, intlinprog, GLPK
MIQP Gurobi, CPLEX, MOSEK
NLP MIPS

MINLP Artelys Knitro (not yet implemented)
LEQ built-in backslash operator

NLEQ Newton’s method
PNE predictor/corrector continuation method

'BPMPD' LP, QP BPMPD*

'CLP' LP, QP CLP*

'CPLEX' LP, QP, MILP, MIQP CPLEX*

'FD' NLEQ fast-decoupled Newton’s method†

'FMINCON' NLP Matlab Opt Toolbox, fmincon*

'FSOLVE' NLEQ Matlab Opt Toolbox, fsolve§

'GLPK' LP, MILP GLPK*(LP only)
'GS' NLEQ Gauss-Seidel method‡

'GUROBI' LP, QP, MILP, MIQP Gurobi*

'IPOPT' LP, QP, NLP Ipopt*

'KNITRO' NLP, MINLP Artelys Knitro*

'MIPS' LP, QP, NLP MIPS, Matpower Interior Point Solver
'MOSEK' LP, QP, MILP, MIQP MOSEK*

'NEWTON' NLEQ Newton’s method
'OSQP' LP, QP OSQP*

'OT' LP, QP, MILP Matlab Opt Toolbox, quadprog, linprog, intlinprog

* Requires the installation of an optional package. See Appendix B for details on the corresponding package.
† Fast-decoupled Newton requires setting fd opt.jac approx fcn to a function handle that returns Jacobian approxi-

mations. See help nleqs fd newton for more details.
‡ Gauss-Seidel requires setting gs opt.x update fcn to a function handle that updates x. See help nleqs gauss seidel

for more details.
§ The fsolve function is included with GNU Octave, but on Matlab it is part of the Matlab Optimization Toolbox.

See Appendix B for more information on the Matlab Optimization Toolbox.
¶ If running on Matlab.

5.5 Accessing the Model

5.5.1 Indexing

For each type of variable, constraint or cost, MP-Opt-Model maintains indexing
information for each named set that is added, including the number of elements and

63

https://github.com/MATPOWER/mips

the starting and ending indices. For each set type, this information is stored in a
struct idx with fields N, i1, and iN, for storing number of elements, starting index
and ending index, respectively. Each of these fields is also a struct with field names
corresponding to the named sets.

For example, if vv is the struct of indexing information for variables, and we have
added the u, v, and w variables as in Section 5.1, then the contents of vv will be as
shown in Table 5-3.

Table 5-3: Example Indexing Data

field value description

vv.N.u nu number of u variables
vv.N.v nv number of v variables
vv.N.w nw number of w variables
vv.i1.u 1 starting index of u in full x
vv.i1.v nu + 1 starting index of v in full x
vv.i1.w nu + nv + 1 starting index of w in full x
vv.iN.u nu ending index of u in full x
vv.iN.v nu + nv ending index of v in full x
vv.iN.w nu + nv + nw ending index of w in full x

get idx

[idx1, idx2, ...] = om.get_idx(set_type1, set_type2, ...);

vv = om.get_idx('var');

[ll, nne, nni] = om.get_idx('lin', 'nle', 'nli');

vv = om.get_idx()

[vv, ll] = om.get_idx()

[vv, ll, nne] = om.get_idx()

[vv, ll, nne, nni] = om.get_idx()

[vv, ll, nne, nni, qq] = om.get_idx()

[vv, ll, nne, nni, qq, nnc] = om.get_idx()

The idx struct of indexing information for each set type is available via the
get idx method. When called with one or more set type strings as inputs, it returns
the corresponding indexing structs. The list of valid set type strings is shown in
Table 5-4. When called without input arguments, the indexing structs are simply
returned in the order listed in the table.

64

Table 5-4: Valid Set Types

set type string var name* description

'var' vv variables
'lin' ll linear constraints
'nle' nne nonlinear equality constraints
'nli' nni nonlinear inequality constraints
'qdc' qq quadratic costs
'nlc' nnc general nonlinear costs

* The name of the variable used by convention for this indexing struct.

For the example model built in Sections 5.1–5.3, where x and lambda are return
values from the solve method, we can, for example, access the solved value of v and
the shadow prices on the nlncon3 constraints with the following code.

[vv, nne] = om.get_idx('var', 'nle');

v = x(vv.i1.v:vv.iN.v);

lam_nln3 = lambda.ineqnonlin(nni.i1.nlncon3:nni.iN.nlncon3);

getN

N = om.getN(set_type)

N = om.getN(set_type, name)

N = om.getN(set_type, name, idx_list)

The getN method can be used to get the number of elements in a particular named
set, or the total for the set type. For example, the number nv of elements in variable
v and total number of elements in the full optimization variable x can be obtained
as follows.

nx = om.getN('var');

nv = om.getN('var', 'v');

See Section 5.7 for details on indexed named sets and the idx list argument.

set type idx map

s = om.set_type_idx_map(set_type, idxs)

s = om.set_type_idx_map(set_type)

s = om.set_type_idx_map(set_type, idxs)

65

Given a particular index (or set of indices) for the full set of elements (e.g. vari-
ables or constraints) of a particular set type, the set type idx map method can be
used to determine which element of which particular named set the index corre-
sponds to. If idxs is empty or not provided it defaults to [1:ns]', where ns is the
full dimension of the set corresponding to the all elements for the specified set type.
Results are returned in a struct s of the same dimensions as the input idxs, where
each element specifies the details of the corresponding named set. The fields of s are
(1) name, with the name of the corresponding set, (2) idx, a cell array of indices for
the name, if the named set is indexed and, (3) i, the index of the element within the
set.

If group by name is true, then the results are consolidated, with a single entry in s

for each unique name index pair, where i field is a vector and there is an additional
field named j that is a vector with the corresponding index of the set type, equal to
a particular element of idxs. In this case s is 1 dimensional.

This method can be useful, for example, when a solver reports an issue with a
particular variable or constraint and you want to map it back to the named sets you
have added to your model. Consider an example in which element 38 of the linear
constraints corresponds to the 11th row of lincon3 and elements 15 and 23 of the
optimization vector x correspond to element 7 of v and element 4 of w, respectively.
The set type idx map method can be used to return this information as follows:

66

>> lin38 = om.set_type_idx_map('lin', 38)

lin38 =

struct with fields:

name: 'lincon3'

idx: []

i: 11

>> s = om.set_type_idx_map('var', [15; 23]);

>> var15 = s(1)

var15 =

struct with fields:

name: 'v'

idx: []

i: 7

>> var23 = s(2)

var23 =

struct with fields:

name: 'w'

idx: []

i: 4

describe idx

label = om.describe_idx(set_type, idxs)

Calls set type idx map and formats each element of the return data as character
array, returning a cell array of the same dimensions as idxs, except in the case where
idxs is scalar, in which case it returns a scalar.

Consider an example in which element 38 of the linear constraints corresponds
to the 11th row of lincon3 and elements 15 and 23 of the optimization vector x
correspond to element 7 of v and element 4 of w, respectively. The describe idx

method can be used to return this information as follows:

67

>> lin38 = om.describe_idx('lin', 38)

lin38 =

'lincon3(11)'

>> vars15_23 = om.describe_idx('var', [15; 23])

vars15_23 =

2x1 cell array

{'v(7)'}

{'w(4)'}

5.5.2 Variables

params var

[v0, vl, vu] = om.params_var()

[v0, vl, vu] = om.params_var(name)

[v0, vl, vu] = om.params_var(name, idx_list)

[v0, vl, vu, vt] = params_var(...)

The params var method returns the initial value v0, lower bound vl and upper
bound vu for the full optimization variable vector x, or for a specific named variable
set. Optionally also returns a corresponding char vector vt of variable types, where
'C', 'I' and 'B' represent continuous integer and binary variables, respectively.

Examples:

[x0, xmin, xmax] = om.params_var();

[w0, wlb, wub, wtype] = om.params_var('w');

See Section 5.7 for details on indexed named sets and the idx list argument.

68

5.5.3 Constraints

params lin constraint

[A, l, u] = om.params_lin_constraint()

[A, l, u] = om.params_lin_constraint(name)

[A, l, u] = om.params_lin_constraint(name, idx_list)

[A, l, u, vs] = om.params_lin_constraint(...)

[A, l, u, vs, i1, in] = om.params_lin_constraint(...)

With no input parameters, the params lin constraint method assembles and
returns the parameters for the aggregate linear constraints from all linear constraint
sets added using add lin constraint. The values of these parameters are cached for
subsequent calls. The parameters are A, l, and u, where the linear constraint is of
the form

l ≤ Ax ≤ u. (5.16)

If a name is provided then it simply returns the parameters for the corresponding
named set. An optional 4th output argument vs indicates the variable sets used
by this constraint set. The size of A will be consistent with vs. Optional 5th and
6th output arguments i1 and iN indicate the starting and ending row indices of the
corresponding constraint set in the full aggregate constraint matrix.

Examples:

[A, l, u] = om.params_lin_constraint();

[A, l, u, vs, i1, iN] = om.params_lin_constraint('lincon2');

See Section 5.7 for details on indexed named sets and the idx list argument.

params nln constraint

N = om.params_nln_constraint(iseq, name)

N = om.params_nln_constraint(iseq, name, idx_list)

[N, fcn] = om.params_nln_constraint(...)

[N, fcn, hess] = om.params_nln_constraint(...)

[N, fcn, hess, vs] = om.params_nln_constraint(...)

[N, fcn, hess, vs, include] = om.params_nln_constraint(...)

Returns the parameters N, and optionally fcn, and hess provided when the cor-
responding named nonlinear constraint set was added to the model. Likewise for

69

indexed named sets specified by name and idx list. The iseq input should be set to
1 for equality constrainst and to 0 for inequality constraints.

An optional 4th output argument vs indicates the variable sets used by this
constraint set.

And, for constraint sets whose functions compute the constraints for another set,
an optional 5th output argument returns a struct with a cell array of set names in
the 'name' field and an array of corresponding dimensions in the 'N' field.

eval lin constraint

Ax_u = om.eval_lin_constraint(x)

Ax_u = om.eval_lin_constraint(x, name)

Ax_u = om.eval_lin_constraint(x, name, idx_list)

[Ax_u, l_Ax] = om.eval_lin_constraint(...)

[Ax_u, l_Ax, A] = om.eval_lin_constraint(...)

Builds and evaluates the linear constraints Ax−u and, optionally l−Ax for the full
set of constraints or an individual named subset for a given value of the optimization
vector x, based on constraints added by add lin constraint.

Examples:

[Ax_u, l_Ax, A] = om.eval_lin_constraint(x);

eval nln constraint

g = om.eval_nln_constraint(x, iseq)

g = om.eval_nln_constraint(x, iseq, name)

g = om.eval_nln_constraint(x, iseq, name, idx_list)

[g, dg] = om.eval_nln_constraint(...)

Builds the nonlinear equality constraints g(x) or inequality constraints h(x) and
optionally their gradients for the full set of constraints or an individual named sub-
set for a given value of the optimization vector x, based on constraints added by
add nln constraint, where g(x) = 0 and h(x) ≤ 0.

Examples:

[g, dg] = om.eval_nln_constraint(x, 1);

[h, dh] = om.eval_nln_constraint(x, 0);

70

eval nln constraint hess

d2G = om.eval_nln_constraint_hess(x, lam, iseq)

Builds the Hessian of the full set of nonlinear equality constraints g(x) or inequality
constraints h(x) for given values of the optimization vector x and dual variables lam,
based on constraints added by add nln constraint, where g(x) = 0 and h(x) ≤ 0.

Examples:

d2G = om.eval_nln_constraint_hess(x, lam, 1)

d2H = om.eval_nln_constraint_hess(x, lam, 0)

5.5.4 Costs

params quad cost

[Q, c] = om.params_quad_cost()

[Q, c] = om.params_quad_cost(name)

[Q, c] = om.params_quad_cost(name, idx_list)

[Q, c, k] = om.params_quad_cost(...)

[Q, c, k, vs] = om.params_quad_cost(...)

With no input parameters, the params quad cost method assembles and returns
the parameters for the aggregate quadratic cost from all quadratic cost sets added
using add quad cost. The values of these parameters are cached for subsequent calls.
The parameters are Q, c, and optionally k, where the quadratic cost is of the form

f(x) =
1

2
xTQx+ cTx+ k. (5.17)

If a name is provided then it simply returns the parameters for the corresponding
named set. In this case, Q and k may be vectors, corresponding to a cost function
f(x) where the i-th element takes the form

fi(x) =
1

2
Qix

2
i + cixi + ki, (5.18)

depending on how the constraint set was initially specified.
An optional 4th output argument vs indicates the variable sets used by this cost

set. The size of Q and c will be consistent with vs.

Examples:

71

[Q, c, k] = om.params_quad_cost();

[Q, c, k, vs, i1, iN] = om.params_quad_cost('qcost2');

See Section 5.7 for details on indexed named sets and the idx list argument.

params nln cost

[N, fcn] = om.params_nln_cost(name)

[N, fcn] = om.params_nln_cost(name, idx_list)

[N, fcn, vs] = om.params_nln_cost(...)

Returns the parameters N and fcn provided when the corresponding named general
nonlinear cost set was added to the model. Likewise for indexed named sets specified
by name and idx list.

An optional 3rd output argument vs indicates the variable sets used by this
constraint set.

eval quad cost

f = om.eval_quad_cost(x ...)

[f, df] = om.eval_quad_cost(x ...)

[f, df, d2f] = om.eval_quad_cost(x ...)

[f, df, d2f] = om.eval_quad_cost(x, name)

[f, df, d2f] = om.eval_quad_cost(x, name, idx_list)

The eval quad cost method evaluates the cost function and its derivatives for
an individual named set or the full set of quadratic costs for a given value of the
optimization vector x, based on costs added by add quad cost.

Examples:

[f, df, d2f] = om.eval_quad_cost(x);

[f, df, d2f] = om.eval_quad_cost(x, 'qcost3');

See Section 5.7 for details on indexed named sets and the idx list argument.

72

eval nln cost

f = om.eval_nln_cost(x)

[f, df] = om.eval_nln_cost(x)

[f, df, d2f] = om.eval_nln_cost(x)

[f, df, d2f] = om.eval_nln_cost(x, name)

[f, df, d2f] = om.eval_nln_cost(x, name, idx_list)

The eval nln cost method evaluates the cost function and its derivatives for an
individual named set or the full set of general nonlinear costs for a given value of the
optimization vector x, based on costs added by add nln cost.

Examples:

[f, df, d2f] = om.eval_quad_cost(x);

[f, df, d2f] = om.eval_quad_cost(x, 'nlncost2');

See Section 5.7 for details on indexed named sets and the idx list argument.

5.5.5 Model Solution

The solved results of a model, as returned by the solve method, are stored in the
soln field of the MP-Opt-Model object as summarized in Table 5-5.

get soln

vals = om.get_soln(set_type, name)

vals = om.get_soln(set_type, name, idx)

vals = om.get_soln(set_type, tags, name)

vals = om.get_soln(set_type, tags, name, idx)

The get soln method can be used to extract solved results for a given named set
of variables, constraints or costs. The input arguments for get soln are summarized
in Table 5-6 and Table 5-7. The variable number of output arguments correspond to
the tags input. If tags is empty or not specified, the calling context will define the
number of outputs, returned in order of default tags for the specified set type.

Examples:

Value of variable named 'P' and shadow prices on its bounds.

73

Table 5-5: Model Solution

field description

om MP-Opt-Model object
.soln model solution struct

.x solution vector

.f final function value*, f(x)

.eflag exit flag
1 – converged successfully

≤ 0 – solver-specific failure code
.output output struct with the following fields:

alg – algorithm code of solver used
(others) – solver-specific fields

.jac final value of Jacobian matrix (for LEQ/NLEQ)

.lambda shadow prices on constraints
.lower variable lower bound
.upper variable upper bound
.mu l linear constraint lower bound
.mu u linear constraint upper bound
.eqnonlin nonlinear equality constraints
.ineqnonlin nonlinear inequality constraints

* Objective function value for optimization problems, constraint function value for sets of equations.

[P, muPmin, muPmax] = om.get_soln('var', 'P');

Shadow prices on upper and lower linear constraint set named 'lin con 1'.

[mu_u, mu_l] = om.get_soln('lin', {'mu_u', 'mu_l'}, 'lin_con_1');

Jacobian of the (2,3)-element of the indexed nonlinear equality constraint set named
'nle con b'.

dg_b_2_3 = om.get_soln('nle', 'dg', 'nle_con_b', {2,3});

74

Table 5-6: Inputs for get soln

name default description

set type required one of the following, specifying the type of set
'var' – variables
'lin' – linear constraints
'nle' – nonlinear equality constraints
'nli' – nonlinear inequality constraints
'nlc' – nonlinear costs
'qdc' – quadratic costs

tags depends char array or cell array of char arrays specifying the desired output(s)†

name required char array specifying the name of the set
idx empty cell array specifying the indices of the set

† Valid values and defaults for tags depend on set type. See Table 5-7 for details.

75

Table 5-7: Values of tags input to get soln

set type valid tag values description

'var' default tags = {'x', 'mu l', 'mu u'}
'x' value of solution variable

'mu l' shadow price on variable lower bound
'mu u' shadow price on variable upper bound

'lin' default tags = {'f'} for LEQ problems, {'g', 'mu l',
'mu u'} otherwise

'f'† equality constraint values, Ax− u
'g' 1× 2 cell array of upper and lower constraint values,

{Ax− u, l −Ax}
'Ax u' upper constraint value, Ax− u
'l Ax' lower constraint value, l −Ax
'mu l' shadow price on constraint lower bound
'mu u' shadow price on constraint upper bound

'nle' default tags = {'g', 'lam', 'dg'}
'g' constraint value, g(x)

'lam' shadow price on constraint
'dg' Jacobian of constraint

'nli' default tags = {'h', 'mu', 'dh'}
'h' constraint value, h(x)
'mu' shadow price on constraint
'dh' Jacobian of constraint

'nlc' or 'qdc' default tags = {'f', 'df', 'd2f'}
'f' cost function value, f(x)‡

'df' gradient of cost function
'd2f' Hession of cost function

† For LEQ problems only.
‡ For 'qdc', f(x) can return be a vector.

76

parse soln

ps = om.parse_soln()

The parse soln method returns a struct of parsed solution vector and shadow
price values for each named set of variables and constraints. The returned ps (parsed
solution) struct has the format shown in Table 5-8, where each of the terminal
elements is a struct with fields corresponding to the respective named sets.

Table 5-8: Output of parse soln

fields description

ps

.var variables
.val struct of solution vectors
.mu l struct of lower bound shadow prices
.mu u struct of upper bound shadow prices

.lin linear constraints
.mu l struct of lower bound shadow prices
.mu u struct of upper bound shadow prices

.nle nonlinear equality constraints
.lam struct of shadow prices

.nli nonlinear inequality constraints
.mu struct of shadow prices

The value of each element in the returned struct can be obtained via the get soln

method as well, but parse soln is generally more efficient if a complete set of values
is needed.

77

5.6 Modifying the Model

The parameters for an existing MP-Opt-Model object can be modified, rather than
having to rebuild a new model from scratch.

set params

om.set_params(set_type, name, params, vals)

om.set_params(set_type, name, idx, params, vals)

The set params method, inputs summarized in Table 5-9, can be used to modify
any of the parameters associated with an existing variable, cost or constraint set.

Examples:

om.set_params('var', 'Pg', 'v0', Pg0);

om.set_params('lin', 'y', {2,3}, {'l', 'u'}, {l, u});

om.set_params('nle', 'Pmis', 'all', {N, @fcn, @hess, vs});

Table 5-9: Inputs for set params

name description

set type one of the following, specifying the type of set, with the corresponding valid
parameter names
'var' – variables: N, v0†, vl†, vu†, vt†

'lin' – linear constraints: A, l, u†, vs†

'nle' – nonlinear equality constraints: N, fcn, hess, vs†

'nli' – nonlinear inequality constraints: N, fcn, hess, vs†

'nlc' – nonlinear costs: N, fcn, vs†

'qdc' – quadratic costs: Q, c†, k†, vs†

name char array specifying the name of the set
idx‡ cell array specifying the indices of the set
params one of the following:

'all' – indicates that vals is a cell array of values whose elements cor-
respond to the input parameters of the respective add * method

char array – name of parameter to modify
cell array – names of parameters to modify

vals new value or cell array of new values corresponding the parameter name(s)
specified in params

† Optional when params = 'all'.
‡ The idx argument is optional.

78

5.7 Indexed Sets

A variable, constraint or cost set is typically identified simply by a name, but it is
also possible to used indexed names. For example, an optimal scheduling problem
with a one week horizon might include a vector variable y for each day, indexed from
1 to 7, and another vector variable z for each hour of each day, indexed from (1, 1)
to (7, 24).

In this case, we case use a single indexed named set for y and another for z.
The dimensions are initialized via the init indexed name method before adding the
variables to the model.24

init indexed name

om.init_indexed_name(set_type, name, dim_list)

Examples:

[f, df, d2f] = om.init_indexed_name('var', 'y', {7});

[f, df, d2f] = om.init_indexed_name('var', 'z', {7, 24});

After initializing the dimensions, indexed named sets of variables, constraints
or costs can be added by supplying the indices in the idx list argument following
the name argument in the call to the corresponding add var, add lin constraint,
add nln constraint, add quad cost, or add nln cost method. The idx list argu-
ment is simply a cell array containing the indices of interest.

Examples:

for d = 1:7

om.add_var('y', {d}, ny(d), y0{d}, yl{d}, yu{d}, yt{d});

end

for d = 1:7

for h = 1:24

om.add_var('z', {d, h}, nz(d, h), z0{d, h}, zl{d, h}, zu{d, h});

end

end

24The same is true for indexed named sets of constraints or costs.

79

Other Methods

All of the methods that take a name argument to specify a simple named set, can
also take an idx list argument immediately following name to handle the equivalent
indexed named set. The idx list argument is simply a cell array containing the
indices of interest. This includes getN and the methods that begin with add , params ,
and eval .25

For an indexed named set, the fields under the N, i1 and iN fields in the index
information struct returned by get idx are now arrays of the appropriate dimension,
not just scalars as in Table 5-3. For example, to find the starting index of the z
variable for day 2, hour 13 in our example you would use vv.i1.z(2, 13). Similarly
for the values returned by getN when specifying only the set type and name.

Variable Subsets

A variable subset for a simple named set, usually specified by the variable varsets

or else vs, is a cell array of variable set names. For indexed named sets of variables,
on the other hand, it is a struct array with two fields name and idx. For each element
of the struct array the name field contains the name of the variable set and the idx

field contains a cell array of indices of interest.
For example, to specify a variable subset consisting of the y variable for day 3

and the z variable for day 3, hour 7, the variable subset could be defined as follows.

vs = struct('name', {'y', 'z'}, 'idx', {{3}, {3,7}});

5.8 Miscellaneous Methods

5.8.1 Public Methods

copy

om2 = om.copy()

The copy method can be used to make a copy of an MP-Opt-Model object.

25Currently, eval nln constraint and eval nln constraint hess are only implemented for the
full aggregate set of constraints and do not yet support evaluation of individual constraint sets.

80

display

om

The display method displays the variable, constraint and cost sets that make up the
model, along with their indexing data.

get userdata

data = om.get_userdata(name)

MP-Opt-Model allows the user to store arbitrary data in fields of the userdata prop-
erty, which is a simple struct. The get userdata method returns the value of the
field specified by name, or an empty matrix if the field does not exist in om.userdata.

is mixed integer

TorF = om.is_mixed_integer()

Returns 1 if any of the variables are binary or integer, 0 otherwise.

problem type

prob_type = om.problem_type()

prob_type = om.problem_type(recheck)

Returns a string identifying the type of mathematical program represented by the
current model, based on the variables, costs,and constraints that have been added
to the model. Used to automatically select an appropriate solver.

Linear and nonlinear equations are models with no costs, no inequality con-
straints, and an equal number of continuous variables and equality constraints.

The prob type string is one of the following:

• 'LEQ' – linear equation
• 'NLEQ' – nonlinear equation
• 'LP' – linear program
• 'QP' – quadratic program
• 'NLP' – nonlinear program
• 'MILP' – mixed-integer linear program
• 'MIQP' – mixed-integer quadratic program

81

• 'MINLP' – mixed-integer nonlinear program26

The output value is cached for future calls, but calling with a true value for
the optional recheck argument will force it to recheck in case the problem type has
changed due to modifying the variables, constraints or costs in the model.

varsets cell2struct

varsets = om.varsets_cell2struct(varsets)

Converts variable subset varsets from a cell array to a struct array, if necessary.

varsets idx

k = om.varsets_idx(varsets)

Returns a vector of indices into the full optimization vector x corresponding to the
variable sets specified by varsets.

varsets len

nv = om.varsets_len(varsets)

Returns the total number of elements in the optimization sub-vector specified by
varsets.

varsets x

x = om.varsets_x(x, varsets)

x = om.varsets_x(x, varsets, 'vector')

Returns a cell array of sub-vectors of x specified by varsets, or the full optimization
vector x, if varsets is empty.

If a 3rd argument is present (value is ignored) the returned value is a single
numeric vector with the individual components stacked vertically.

26MP-Opt-Model does not yet implement solving MINLP problems.

82

5.8.2 Private Methods

def set types

om.def_set_types()

The def set types method is a private method that assigns a struct to the set types

property of the object. The fields of the struct correspond to the valid set types listed
in Table 5-4 and the values are labels used by the display method.

init set types

om.init_set_types()

Initializes the base data structures for each set type.

5.9 Matpower Index Manager Base Class – mp idx manager

Most of the functionality of the opt model class related to managing the indexing
of the various set types is inherited from the Matpower Index Manager base class
named mp idx manager. The properties and methods implemented in this base class
and inherited or overridden by opt model are listed in Table 5-10.

The Matpower Index Manager base class initializes and manages the data that
is common across all set types. Table 5-11 illustrates for an example 'var' set type,
such as defined in opt model, what the data structure looks like, but it is the same
for any other set types defined by child classes, such as opt model.

83

Table 5-10: Matpower Index Manager (mp idx manager) Properties and Methods

name description

Properties
set types struct whose fields define the valid set types*

userdata struct for storing arbitrary user-defined data

Public Methods
mp idx manager constructor for mp idx manager class
copy makes a copy of an existing mp idx manager object
describe idx describes indices of a given set type, e.g. variable 361 corresponds

to w(68), see Section 5.5.1
display set displays indexing for a particular set type, typically called by

display

get access (possibly nested) fields of the object
get idx returns index structure(s) for specified set type(s), with start-

ing/ending indices and number of elements for each named (and
optionally indexed) block

get userdata retreives values of user data stored in the object
getN returns the number of elements of any given set type†

init indexed name initializes dimensions for a particular indexed named set
set type idx map maps indices of a given set type, e.g. variable 361 corresponds to

w(68), see Section 5.5.1

Private Methods‡

add named set adds indexing information for new instance of a given set type
init set types initializes the data structures for each set type
valid named set type returns label for given named set type if valid, empty otherwise

* This value is initialized automatically by the def set types method of the sub-class.
† For all, or alternatively, only for a named (and possibly indexed) subset.
‡ For internal use only.

84

Table 5-11: Matpower Index Manager (mp idx manager) Object Structure

name description

obj

.set types struct whose fields define the valid set types

.var data for 'var' set type, e.g. variable sets that make up the full
optimization variable x

.idx

.i1 starting index within x

.iN ending index within x

.N number of elements in this variable set
.N total number of elements in x
.NS number of variable sets or named blocks
.data additional set-type-specific data for each block†

.order struct array of names/indices for variable blocks in the order they
appear in x

.name name of the block, e.g. z

.idx indices for name, {2,3} → z(2,3)

.<other-set-types> with structure identical to var

.userdata struct for storing arbitrary user-defined data

† For the 'var' set type in opt model, this is a struct with fields v0, vl, vu, and vt for storing initial value,
lower and upper bounds, and variable type. For other set types

85

5.10 Reference

5.10.1 Properties

The properties in opt model consist of those inherited from the base class, plus one
corresponding to each set type.

Table 5-12: opt model Properties

name description

set types† struct whose fields define the valid set types*

prob type used to cache return value of problem type method
var‡ data for 'var' set type, variables
lin‡ data for 'lin' set type, linear constraints
nle‡ data for 'nle' set type, nonlinear equality constraints
nli‡ data for 'nli' set type, nonlinear inequality constraints
qdc‡ data for 'qdc' set type, quadratic costs
nlc‡ data for 'nlc' set type, general nonlinear costs
userdata† struct for storing arbitrary user-defined data

* This value is initialized automatically by the def set types method of the sub-
class.

† Inherited from Matpower Index Manager base class, mp idx manager.
‡ See var field in Table 5-11 for details of the structure of this field. The only

difference between set types is the structure of the data sub-field.

5.10.2 Methods

86

Table 5-13: opt model Methods

name description

Public Methods
add lin constraint add linear constraint set, see Section 5.2.1
add nln constraint add general nonlinear constraint set, see Section 5.2.2
add nln cost add general nonlinear cost set, see Section 5.3.2
add quad cost add quadratic cost set, see Section 5.3.1
add var add variable set, see Section 5.1
display displays variable, constraint and cost sets, see Section 5.8.1
eval lin constraint computes linear constraint values, see Section 5.5.3
eval nln constraint builds full set of nonlinear equality or inequality constraints and

their gradients, see Section 5.5.3
eval nln constraint hess builds Hessian for full set of nonlinear equality or inequality con-

straints, see Section 5.5.3
eval nln cost evaluates nonlinear cost function and its derivatives‡, see Sec-

tion 5.5.4
eval quad cost evaluates quadratic cost function and its derivatives‡, see Sec-

tion 5.5.4
get soln returns named/indexed results for solved model
is mixed integer returns 1 if any of the variables are binary or integer, 0 otherwise
params lin constraint assembles and returns parameters for linear constraints‡

params nln constraint assembles and returns parameters for nonlinear constraints‡

params nln cost assembles and returns parameters for general nonlinear costs‡

params quad cost assembles and returns parameters for quadratic costs‡

params var assembles and returns inital values, bounds, types for variables‡

parse soln returns struct of all named solution vectors and shadow prices
problem type type of mathematical program represented by current model
solve solves the model, see Section 5.4
varsets cell2struct converts variable subset varsets from cell array to struct array
varsets idx returns vector of indices into x corresponding to varsets

varsets len returns number of elements in sub-vector specified by varsets

varsets x returns cell array of sub-vectors of x specified by varsets

Inherited Public Methods†

copy, describe idx, display set, get, get idx, get userdata, getN,
init indexed name, set type idx map

Private Methods*

add named set§ adds information for new instance of a given set type
def set types initializes the set types property
init set types§ initializes the data structures for each set type
valid named set type† returns label for given named set type if valid, empty otherwise

* For internal use only.
† Inherited from Matpower Index Manager base class, mp idx manager, see Table 5-10.
‡ For all, or alternatively, only for a named (and possibly indexed) subset.
§ Overrides and augments method inherited from Matpower Index Manager base class, mp idx manager.

87

6 Utility Functions

6.1 have fcn

This function is deprecated. Instead, please use have feature, now included as part of
MP-Test and described in the MP-Test README file. It is simply a drop-in replacement
that has been reimplemented with an extensible, modular design, where the detection
of a feature named <tag> is implemented by the function named have feature <tag>.
The current have fcn is a simple wrapper around have feature.

6.2 mpomver

mpomver

v = mpomver

v = mpomver('all')

Prints or returns MP-Opt-Model version information for the current installation.
When called without an input argument, it returns a string with the version number.
Without an input argument it returns a struct with fields Name, Version, Release,
and Date, all of which are strings. Calling mpomver without assigning the return value
prints the version and release date of the current installation of MP-Opt-Model.

6.3 nested struct copy

ds = nested_struct_copy(d, s)

ds = nested_struct_copy(d, s, opt)

The nested struct copy function copies values from a source struct s to a desti-
nation struct d in a nested, recursive manner. That is, the value of each field in s

is copied directly to the corresponding field in d, unless that value is itself a struct,
in which case the copy is done via a recursive call to nested struct copy. Certain
aspects of the copy behavior can be controled via the optional options struct opt,
including the possible checking of valid field names.

6.4 Private Feature Detection Functions

The following are private functions that implement detection of specific optional
functionality. They are not intended to be called directly, but rather are used to
extend the capabilities of have feature, a function included in MP-Test and described
in the MP-Test README file.

88

https://github.com/MATPOWER/mptest
https://github.com/MATPOWER/mptest/blob/master/README.md
https://github.com/MATPOWER/mptest
https://github.com/MATPOWER/mptest/blob/master/README.md

6.4.1 have feature bpmpd

This function implements the 'bpmpd' tag for have feature to detect availability/version
of BPMPD MEX (interior point LP/QP solver). See also Appendix B.1.

6.4.2 have feature catchme

This function implements the 'catchme' tag for have feature to detect support for
catch me syntax in try/catch constructs.

6.4.3 have feature clp

This function implements the 'clp' tag for have feature to detect availability/version
of CLP (COIN-OR Linear Programming solver, LP/QP solver. See also Appendix B.2.

6.4.4 have feature opti clp

This function implements the 'opti clp' tag for have feature to detect the version
of CLP distributed with OPTI Toolbox27 [15]. See also Appendix B.2.

6.4.5 have feature cplex

This function implements the 'cplex' tag for have feature to detect availability/version
of CPLEX, IBM ILOG CPLEX Optimizer. See also Appendix B.3.

6.4.6 have feature evalc

This function implements the 'evalc' tag for have feature to detect support for
evalc() function.

6.4.7 have feature fmincon

This function implements the 'fmincon' tag for have feature to detect availabil-
ity/version of fmincon, solver from the Matlab Optimization Toolbox. See also
Appendix B.9.

27The OPTI Toolbox is available from https://www.inverseproblem.co.nz/OPTI/.

89

https://www.inverseproblem.co.nz/OPTI/

6.4.8 have feature fmincon ipm

This function implements the 'fmincon ipm' tag for have feature to detect avail-
ability/version of fmincon with interior point solver from the Matlab Optimization
Toolbox 4.x and later. See also Appendix B.9.

6.4.9 have feature fsolve

This function implements the 'fsolve' tag for have feature to detect availabil-
ity/version of fsolve, nonlinear equation solver from the Matlab Optimization
Toolbox or GNU Octave. See also Appendix B.9.

6.4.10 have feature glpk

This function implements the 'glpk' tag for have feature to detect availability/version
of glpk, GNU Linear Programming Kit, LP/MILP solver. See also Appendix B.4.

6.4.11 have feature gurobi

This function implements the 'gurobi' tag for have feature to detect availabil-
ity/version of gurobi, Gurobi optimizer. See also Appendix B.5.

6.4.12 have feature intlinprog

This function implements the 'intlinprog' tag for have feature to detect availabil-
ity/version of intlinprog, MILP solver from the Matlab Optimization Toolbox 7.0
(R2014a) and later.

6.4.13 have feature ipopt

This function implements the 'ipopt' tag for have feature to detect availability/version
of Ipopt, a nonlinear programming solver from COIN-OR. See also Appendix B.6.

6.4.14 have feature ipopt auxdata

This function implements the 'ipopt auxdata' tag for have feature to detect support
for ipopt auxdata(), required by Ipopt 3.11 and later. See also Appendix B.6.

90

6.4.15 have feature isequaln

This function implements the 'isequaln' tag for have feature to detect support for
isequaln function.

6.4.16 have feature knitro

This function implements the 'knitro' tag for have feature to detect availabil-
ity/version of Artelys Knitro, a nonlinear programming solver. See also Appendix B.7.

6.4.17 have feature knitromatlab

This function implements the 'knitromatlab' tag for have feature to detect avail-
ability/version of Artelys Knitro 9.0.0 and later. See also Appendix B.7.

6.4.18 have feature ktrlink

This function implements the 'ktrlink' tag for have feature to detect availabil-
ity/version of Artelys Knitro prior to version 9.0.0, which required the Matlab
Optimization Toolbox. See also Appendix B.7.

6.4.19 have feature linprog

This function implements the 'linprog' tag for have feature to detect availabil-
ity/version of linprog, LP solver from the Matlab Optimization Toolbox. See also
Appendix B.9.

6.4.20 have feature linprog ds

This function implements the 'linprog ds' tag for have feature to detect availabil-
ity/version of linprog with support for the dual simplex method, from the Matlab
Optimization Toolbox 7.1 (R2014b) and later. See also Appendix B.9.

6.4.21 have feature mosek

This function implements the 'mosek' tag for have feature to detect availability/version
of MOSEK, LP/QP/MILP/MIQP solver. See also Appendix B.8.

91

6.4.22 have feature optim

This function implements the 'optim' tag for have feature to detect availability/version
of the Optimization Toolbox. See also Appendix B.9.

6.4.23 have feature optimoptions

This function implements the 'optimoptions' tag for have feature to detect support
for optimoptions, option setting funciton for the Matlab Optimization Toolbox 6.3
and later. See also Appendix B.9.

6.4.24 have feature osqp

This function implements the 'osqp' tag for have feature to detect availability/version
of OSQP, Operator Splitting Quadratic Program solver. See also Appendix B.10.

6.4.25 have feature quadprog

This function implements the 'quadprog' tag for have feature to detect detect avail-
ability/version of quadprog, QP solver from the Matlab Optimization Toolbox. See
also Appendix B.9.

6.4.26 have feature quadprog ls

This function implements the 'quadprog ls' tag for have feature to detect availabil-
ity/version of quadprog with support for the large-scale interior point convex solver,
from the Matlab Optimization Toolbox 6.x and later. See also Appendix B.9.

6.4.27 have feature sdpt3

This function implements the 'sdpt3' tag for have feature to detect availability/version
of SDPT3 SDP solver, https://github.com/sqlp/sdpt3.

6.4.28 have feature sedumi

This function implements the 'sedumi' tag for have feature to detect availabil-
ity/version of SeDuMi SDP solver, http://sedumi.ie.lehigh.edu.

92

https://github.com/sqlp/sdpt3
http://sedumi.ie.lehigh.edu

6.4.29 have feature yalmip

This function implements the 'yalmip' tag for have feature to detect availabil-
ity/version of YALMIP modeling platform, https://yalmip.github.io.

6.5 Matpower-related Functions

The following four functions are related specifically to Matpower, and are used for
extracting relevant solver options from a Matpower options struct.

6.5.1 mpopt2nleqopt

nleqopt = mpopt2nleqopt(mpopt)

nleqopt = mpopt2nleqopt(mpopt, model)

nleqopt = mpopt2nleqopt(mpopt, model, alg)

The mpopt2nleqopt function returns an options struct suitable for nleqs master

or one of the solver specific equivalents. It is constructed from the relevant portions
of mpopt, a Matpower options struct. The final alg argument allows the solver to
be set explicitly (in nleqopt.alg). By default this value is set to 'DEFAULT', which
currently selects Newton’s method.

6.5.2 mpopt2nlpopt

nlpopt = mpopt2nlpopt(mpopt)

nlpopt = mpopt2nlpopt(mpopt, model)

nlpopt = mpopt2nlpopt(mpopt, model, alg)

The mpopt2nlpopt function returns an options struct suitable for nlps master

or one of the solver specific equivalents. It is constructed from the relevant por-
tions of mpopt, a Matpower options struct. The final alg argument allows the
solver to be set explicitly (in nlpopt.alg). By default this value is taken from
mpopt.opf.ac.solver.

When the solver is set to 'DEFAULT', this function currently defaults to MIPS.

6.5.3 mpopt2qpopt

qpopt = mpopt2qpopt(mpopt)

qpopt = mpopt2qpopt(mpopt, model)

qpopt = mpopt2qpopt(mpopt, model, alg)

93

https://yalmip.github.io
https://matpower.org

The mpopt2qpopt function returns an options struct suitable for qps master,
miqps master or one of the solver specific equivalents. It is constructed from the
relevant portions of mpopt, a Matpower options struct. The model argument spec-
ifies whether the problem to be solved is an LP, QP, MILP or MIQP problem to
allow for the selection of a suitable default solver. The final alg argument allows
the solver to be set explicitly (in qpopt.alg). By default this value is taken from
mpopt.opf.dc.solver.

When the solver is set to 'DEFAULT', this function also selects the best available
solver that is applicable28 to the specific problem class, based on the following prece-
dence: Gurobi, CPLEX, MOSEK, Optimization Toolbox, GLPK, BPMPD, MIPS.

6.5.4 mpopt2pneopt

pneopt = mpopt2pneopt(mpopt)

pneopt = mpopt2pneopt(mpopt, model)

pneopt = mpopt2pneopt(mpopt, model, alg)

The mpopt2pneopt function returns an options struct suitable for pnes master.
It is constructed from the relevant portions of mpopt, a Matpower options struct.
The final alg argument allows the solver to be set explicitly (in pneopt.alg). By
default this value is set to 'DEFAULT', which is currently the only available method.

28GLPK is not available for problems with quadratic costs (QP and MIQP), BPMPD and MIPS
are not available for mixed-integer problems (MILP and MIQP), and the Optimization Toolbox is
not an option for problems that combine the two (MIQP).

94

7 Acknowledgments

The authors would like to acknowledge the support of the research grants and con-
tracts that have contributed directly and indirectly to the development of MP-Opt-Model.
This includes funding from the Power Systems Engineering Research Center (PSerc),
the U.S. Department of Energy,29 and the National Science Foundation.30

The authors would also like to explicitly thank and acknowledge Shrirang Ab-
hyankar and Alexander Flueck for their contributions to the continuation power flow
code and documentation in Matpower upon which the predictor-corrector contin-
uation method for parameterized nonlinear equations in MP-Opt-Model is based.

29Supported in part by the Consortium for Electric Reliability Technology Solutions (Certs)
and the Office of Electricity Delivery and Energy Reliability, Transmission Reliability Program of
the U.S. Department of Energy under the National Energy Technology Laboratory Cooperative
Agreement No. DE-FC26-09NT43321.

30This material is based upon work supported in part by the National Science Foundation under
Grant Nos. 0532744, 1642341 and 1931421. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

95

https://matpower.org

Appendix A MP-Opt-Model Files, Functions and

Classes

This appendix lists all of the files, functions and classes that MP-Opt-Model pro-
vides. In most cases, the function is found in a Matlab M-file in the lib directory
of the distribution, where the .m extension is omitted from this listing. For more
information on each, at the Matlab/Octave prompt, simply type help followed by
the name of the function. For documentation and other files, the filename extensions
are included.

Table A-1: MP-Opt-Model Files and Functions

name description

AUTHORS list of authors and contributors
CHANGES MP-Opt-Model change history
CITATION info on how to cite MP-Opt-Model
CONTRIBUTING.md notes on how to contribute to the MP-Opt-Model project
LICENSE MP-Opt-Model license (3-clause BSD license)
README.md basic introduction to MP-Opt-Model
docs/

MP-Opt-Model-manual.pdf MP-Opt-Model User’s Manual
src/MP-Opt-Model-manual/

MP-Opt-Model-manual.tex LaTeX source for MP-Opt-Model User’s Manual
lib/ MP-Opt-Model software (see Tables A-2, A-5, A-6 and A-7)
t/ MP-Opt-Model tests (see Table A-9)

96

https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf

Table A-2: Solver Functions

name description

miqps master Mixed-Integer Quadratic Program Solver wrapper function, provides a
unified interface for various MIQP/MILP solvers

miqps cplex MIQP/MILP solver API implementation for CPLEX (cplexmiqp and
cplexmilp)†

miqps glpk MILP solver API implementation for GLPK†

miqps gurobi MIQP/MILP solver API implementation for Gurobi†

miqps mosek MIQP/MILP solver API implementation for MOSEK (mosekopt)†

miqps ot QP/MILP solver API implementation for Matlab Opt Toolbox’s
intlinprog, quadprog, linprog

nleqs master Nonlinear Equation Solver wrapper function, provides a unified interface
for various nonlinear equation (NLEQ) solvers

nleqs core core NLEQ solver API implementation with arbitrary update function,
used to implement nleqs gauss seidel and nleqs newton

nleqs fd newton NLEQ solver API implementation for fast-decoupled Newton’s method
solver

nleqs fsolve NLEQ solver API implementation for fsolve
nleqs gauss seidel NLEQ solver API implementation for Gauss-Seidel method solver
nleqs newton NLEQ solver API implementation for Newton’s method solver

nlps master Nonlinear Program Solver wrapper function, provides a unified interface
for various NLP solvers

nlps fmincon NLP solver API implementation for Matlab Opt Toolbox’s fmincon

nlps ipopt NLP solver API implementation for Ipopt-based solver†

nlps knitro NLP solver API implementation for Artelys Knitro-based solver†

qps master Quadratic Program Solver wrapper function, provides a unified interface
for various QP/LP solvers

qps bpmpd QP/LP solver API implementation for BPMPD MEX†

qps clp QP/LP solver API implementation for CLP†

qps cplex QP/LP solver API implementation for CPLEX (cplexqp and cplexlp)†

qps glpk QP/LP solver API implementation for GLPK†

qps gurobi QP/LP solver API implementation for Gurobi†

qps ipopt QP/LP solver API implementation for Ipopt-based solver†

qps mosek QP/LP solver API implementation for MOSEK (mosekopt)†

qps osqp QP/LP solver API implementation for OSQP†

qps ot QP/LP solver API implementation for Matlab Opt Toolbox’s quadprog,
linprog

pnes master Parameterized Nonlinear Equation Solver wrapper function, provides a
unified interface for parameterized nonlinear equation (PNE) solvers

deprecated functions
miqps matpower use miqps master instead
qps matpower use qps master instead

† Requires the installation of an optional package. See Appendix B for details on the corresponding package.

97

Table A-3: PNE Implementation Functions*

name description

pne callback default default callback function
pne callback nose callback function for handling nose point detection events
pne callback target lam callback function for handling target λ events
pne detect events detect events from event function values
pne detected event returns detected event of a particular name
pne event nose event function to detect the limit or nose point
pne event target lam event function to detect a target λ value
pne pfcn arc len arc length parameterization function
pne pfcn natural natural parameterization function
pne pfcn pseudo arc len pseudo arc length parameterization function
pne register callbacks registers callback functions
pne register events registers event functions

* Used to implement the predictor/corrector continuation method in pnes master.

Table A-4: Solver Options, etc.

name description

clp options default options for CLP solver†

cplex options default options for CPLEX solver†

glpk options default options for GLPK solver†

gurobi options default options for Gurobi solver†

gurobiver prints version information for Gurobi/Gurobi MEX
ipopt options default options for Ipopt solver†

mosek options default options for MOSEK solver†

mosek symbcon symbolic constants to use for MOSEK solver options†

osqp options default options for OSQP solver†

osqpver prints version information for OSQP

† Requires the installation of an optional package. See Appendix B for details on the
corresponding package.

98

Table A-5: Optimization Model Class

name description

@opt model/ optimization model class (subclass of mp idx manager)
opt model constructor for the opt model class
add lin constraint adds a named subset of linear constraints to the model
add named set† adds a named subset of costs, constraints or variables to the model
add nln constraint adds a named subset of nonlinear constraints to the model
add nln cost adds a named subset of general nonlinear costs to the model
add quad cost adds a named subset of quadratic costs to the model
add var adds a named subset of optimization variables to the model
display called to display object when statement not ended with semicolon
eval lin constraint computes linear constraint values
eval nln constraint computes nonlinear equality or inequality constraints and their

gradients
eval nln constraint hess returns Hessian for full set of nonlinear equality or inequality con-

straints
eval nln cost evaluates general nonlinear costs and derivatives
eval quad cost evaluates quadratic costs and derivatives
get idx returns the idx struct for vars, lin/nln constraints, costs
get soln returns named/indexed results for solved model
init indexed name initializes dimensions for indexed named set of costs, constraints

or variables
is mixed integer indicates whether any of the variables are binary or integer
params lin constraint returns individual or full set of linear constraint parameters
params nln constraint returns individual nonlinear constraint parameters
params nln cost returns individual general nonlinear cost parameters
params quad cost returns individual or full set of quadratic cost coefficients
params var returns initial values, bounds and variable type for optimimization

vector x̂‡

parse soln returns struct of all named solution vectors and shadow prices
problem type indicates type of mathematical program (e.g. LP, QP, MILP,

MIQP, or NLP)
solve solves the optimization model
varsets cell2struct† converts variable set list from cell array to struct array
varsets idx returns vector of indices into opt vector x̂ for variable set list
varsets len returns total number of optimization variables for variable set list
varsets x assembles cell array of sub-vectors of opt vector x̂ specified by

variable set list
nlp consfcn§ evaluates nonlinear constraints and gradients for opt model

nlp costfcn§ evaluates nonlinear costs, gradients, Hessian for opt model

nlp hessfcn§ evaluates nonlinear constraint Hessians for opt model

† Private method for internal use only.
‡ For all, or alternatively, only for a named (and possibly indexed) subset.
§ Ideally should be implemented as a method of the opt model class, but a bug in Octave 4.2.x and earlier prevents

it from finding an inherited method via a function handle, which MP-Opt-Model requires.

99

Table A-6: Matpower Index Manager Class

name description

@mp idx manager/ Matpower Index Manager abstract class used to manage index-
ing and ordering of various sets of parameters, etc. (e.g. variables,
constraints, costs for OPF Model objects).

mp idx manager constructor for the mp idx manager class
add named set† add named subset of a particular type to the object
describe idx describes indices of a given set type, e.g. variable 361 corresponds

to w(68)

get idx returns index structure(s) for specified set type(s), with start-
ing/ending indices and number of elements for each named (and
optionally indexed) block

get userdata retreives values of user data stored in the object
get returns the value of a field of the object
getN returns the number of elements of any given set type‡

init indexed name initializes dimensions for a particular indexed named set
set type idx map maps indices of a given set type, e.g. variable 361 corresponds to

w(68)

valid named set type† returns label for given named set type if valid, empty otherwise

† Private method for internal use only.
‡ For all, or alternatively, only for a named (and possibly indexed) subset.

Table A-7: Utility Functions

name description

have fcn checks for availability of optional functionality*

mpomver prints version information for MP-Opt-Model
mpopt2nleqopt create/modify nleqs master options struct from Matpower op-

tions struct
mpopt2nlpopt create/modify nlps master options struct from Matpower op-

tions struct
mpopt2qpopt create/modify mi/qps master options struct from Matpower op-

tions struct
mpopt2pneopt create/modify pnes master options struct from Matpower op-

tions struct
nested struct copy copies the contents of nested structs

* Deprecated. Please use have feature from MP-Test instead.

100

https://github.com/MATPOWER/mptest

Table A-8: Feature Detection Functions*

name description

have feature bpmpd bp, BPMPD interior point LP/QP solver
have feature catchme support for catch me syntax in try/catch constructs
have feature clp CLP, LP/QP solver, https://github.com/coin-or/Clp
have feature opti clp version of CLP distributed with OPTI Toolbox,

https://www.inverseproblem.co.nz/OPTI/

have feature cplex CPLEX, IBM ILOG CPLEX Optimizer
have feature evalc support for evalc() function
have feature fmincon fmincon, solver from Optimization Toolbox
have feature fmincon ipm fmincon with interior point solver from Optimization Toolbox

4.x+
have feature fsolve fsolve, nonlinear equation solver from Optimization Toolbox
have feature glpk glpk, GNU Linear Programming Kit, LP/MILP solver
have feature gurobi gurobi, Gurobi solver, https://www.gurobi.com/
have feature intlinprog intlinprog, MILP solver from Optimization Toolbox 7.0

(R2014a)+
have feature ipopt Ipopt, NLP solver, https://github.com/coin-or/Ipopt
have feature ipopt auxdata support for ipopt auxdata(), required by Ipopt 3.11 and

later
have feature isequaln support for isequaln function
have feature knitro Artelys Knitro, NLP solver, https://www.artelys.com/

solvers/knitro/

have feature knitromatlab Artelys Knitro, version 9.0.0+
have feature ktrlink Knitro, version prior to 9.0.0 (requires Optimization Toolbox)
have feature linprog linprog, LP solver from Optimization Toolbox
have feature linprog ds linprog w/dual-simplex solver from Optimization Toolbox

7.1 (R2014b)+
have feature mosek MOSEK, LP/QP solver, https://www.mosek.com/
have feature optim Optimization Toolbox
have feature optimoptions optimoptions, option setting funciton for Optimization Tool-

box 6.3+
have feature osqp OSQP, Operator Splitting Quadratic Program solver,

https://osqp.org

have feature quadprog quadprog, QP solver from Optimization Toolbox
have feature quadprog ls quadprog with large-scale interior point convex solver from

Optimization Toolbox 6.x+
have feature sdpt3 SDPT3 SDP solver, https://github.com/sqlp/sdpt3
have feature sedumi SeDuMi SDP solver, http://sedumi.ie.lehigh.edu
have feature yalmip YALMIP modeling platform, https://yalmip.github.io

* These functions implement new tags and the detection of the corresponding features for have feature which
is part of MP-Test.

101

https://github.com/coin-or/Clp
https://www.inverseproblem.co.nz/OPTI/
https://www.gurobi.com/
https://github.com/coin-or/Ipopt
https://www.artelys.com/solvers/knitro/
https://www.artelys.com/solvers/knitro/
https://www.mosek.com/
https://osqp.org
https://github.com/sqlp/sdpt3
http://sedumi.ie.lehigh.edu
https://yalmip.github.io
https://github.com/MATPOWER/mptest

Table A-9: MP-Opt-Model Examples & Tests

name description

lib/t/ MP-Opt-Model examples & tests
nleqs master ex1 code for NLEQ Example 1 (see Section 4.4.1) for nleqs master

nleqs master ex2 code for NLEQ Example 2 (see Section 4.4.2) for nleqs master

nlps master ex1 code for NLP Example 1 (see Section 4.3.1) for nlps master

nlps master ex2 code for NLP Example 2 (see Section 4.3.2) for nlps master

qp ex1 code for QP Example from Section 2.3
pne ex1 code for PNE Example (see Section 4.5.8) for pnes master

test mp opt model runs full MP-Opt-Model test suite
t have fcn runs tests for (deprecated) have fcn

t miqps master runs tests of MILP/MIQP solvers via miqps master

t nested struct copy runs tests for nested struct copy

t nleqs master runs tests of NLEQ solvers via nleqs master

t nlps master runs tests of NLP solvers via nlps master

t om solve leqs runs tests of LEQ solvers via om.solve()

t om solve miqps runs tests of MILP/MIQP solvers via om.solve()

t om solve nleqs runs tests of NLEQ solvers via om.solve()

t om solve nlps runs tests of NLP solvers via om.solve()

t om solve pne runs tests of PNE solvers via om.solve()

t om solve qps runs tests of LP/QP solvers via om.solve()

t opt model runs tests for opt model objects
t pnes master runs tests of PNE solvers via pnes master

t qps master runs tests of LP/QP solvers via qps master

102

Appendix B Optional Packages

There are a number of optional packages, not included in the MP-Opt-Model distri-
bution, that MP-Opt-Model can utilize if they are installed in your Matlab/Octave
path.

B.1 BPMPD MEX – MEX interface for BPMPD

BPMPD MEX [12, 13] is a Matlab MEX interface to BPMPD, an interior point
solver for quadratic programming developed by Csaba Mészáros at the MTA SZ-
TAKI, Computer and Automation Research Institute, Hungarian Academy of Sci-
ences, Budapest, Hungary. It can be used by MP-Opt-Model’s QP/LP solver inter-
face.

This MEX interface for BPMPD was coded by Carlos E. Murillo-Sánchez, while
he was at Cornell University. It does not provide all of the functionality of BPMPD,
however. In particular, the stand-alone BPMPD program is designed to read and
write results and data from MPS and QPS format files, but this MEX version does
not implement reading data from these files into Matlab.

The current version of the MEX interface is based on version 2.21 of the BPMPD
solver, implemented in Fortran. Builds are available for Linux (32-bit), Mac OS
X (PPC, Intel 32-bit) and Windows (32-bit) at http://www.pserc.cornell.edu/

bpmpd/.
When installed BPMPD MEX can be used to solve general LP and QP problems

via MP-Opt-Model’s common QP solver interface qps master with the algorithm
option set to 'BPMPD', or by calling qps bpmpd directly.

B.2 CLP – COIN-OR Linear Programming

The CLP [14] (COIN-OR Linear Programming) solver is an open-source linear pro-
gramming solver written in C++ by John Forrest. It can solve both linear program-
ming (LP) and quadratic programming (QP) problems. It is primarily meant to be
used as a callable library, but a basic, stand-alone executable version exists as well.
It is available from the COIN-OR initiative at https://github.com/coin-or/Clp.

To use CLP with MP-Opt-Model, a MEX interface is required31. For Microsoft

31According to David Gleich at http://web.stanford.edu/~dgleich/notebook/2009/03/

coinor_clop_for_matlab.html, there was a Matlab MEX interface to CLP written by Jo-
han Lofberg and available (at some point in the past) at http://control.ee.ethz.ch/~joloef/

mexclp.zip. Unfortunately, at the time of this writing, it seems it is no longer available
there, but Davide Barcelli makes some precompiled MEX files for some platforms available here

103

http://www.pserc.cornell.edu/bpmpd/
http://www.pserc.cornell.edu/bpmpd/
https://github.com/coin-or/Clp
http://web.stanford.edu/~dgleich/notebook/2009/03/coinor_clop_for_matlab.html
http://web.stanford.edu/~dgleich/notebook/2009/03/coinor_clop_for_matlab.html
http://control.ee.ethz.ch/~joloef/mexclp.zip
http://control.ee.ethz.ch/~joloef/mexclp.zip

Windows users, a pre-compiled MEX version of CLP (and numerous other solvers,
such as GLPK and Ipopt) are easily installable as part of the OPTI Toolbox32 [15]

With the Matlab interface to CLP installed, it can be used to solve general LP
and QP problems via MP-Opt-Model’s common QP solver interface qps master with
the algorithm option set to 'CLP', or by calling qps clp directly.

B.3 CPLEX – High-performance LP, QP, MILP and MIQP
Solvers

The IBM ILOG CPLEX Optimizer, or simply CPLEX, is a collection of optimization
tools that includes high-performance solvers for large-scale linear programming (LP)
and quadratic programming (QP) problems, among others. More information is
available at https://www.ibm.com/analytics/cplex-optimizer.

Although CPLEX is a commercial package, at the time of this writing the full
version is available to academics at no charge through the IBM Academic Initia-
tive program for teaching and non-commercial research. See http://www.ibm.com/

support/docview.wss?uid=swg21419058 for more details.
When the Matlab interface to CPLEX is installed, it can also be used to

solve general LP, QP problems via MP-Opt-Model’s common QP solver interface
qps master, or MILP and MIQP problems via miqps master, with the algorithm
option set to 'CPLEX', or by calling qps cplex or miqps cplex directly.

B.4 GLPK – GNU Linear Programming Kit

The GLPK [16] (GNU Linear Programming Kit) package is intended for solving
large-scale linear programming (LP), mixed-integer programming (MIP), and other
related problems. It is a set of routines written in ANSI C and organized in the form
of a callable library.

To use GLPK with MP-Opt-Model, a MEX interface is required33. For Microsoft
Windows users, a pre-compiled MEX version of GLPK (and numerous other solvers,
such as CLP and Ipopt) are easily installable as part of the OPTI Toolbox34 [15].

http://www.dii.unisi.it/~barcelli/software.php, and the ZIP file linked as Clp 1.14.3 con-
tains the MEX source as well as a clp.m wrapper function with some rudimentary documentation.

32The OPTI Toolbox is available from https://www.inverseproblem.co.nz/OPTI/.
33The http://glpkmex.sourceforge.net site and Davide Barcelli’s page http://www.dii.

unisi.it/~barcelli/software.php may be useful in obtaining the MEX source or pre-compiled
binaries for Mac or Linux platforms.

34The OPTI Toolbox is available from https://www.inverseproblem.co.nz/OPTI/.

104

https://www.ibm.com/analytics/cplex-optimizer
http://www.ibm.com/support/docview.wss?uid=swg21419058
http://www.ibm.com/support/docview.wss?uid=swg21419058
http://www.dii.unisi.it/~barcelli/software.php
https://www.inverseproblem.co.nz/OPTI/
http://glpkmex.sourceforge.net
http://www.dii.unisi.it/~barcelli/software.php
http://www.dii.unisi.it/~barcelli/software.php
https://www.inverseproblem.co.nz/OPTI/

When GLPK is installed, either as part of Octave or with a MEX interface for
Matlab, it can be used to solve general LP problems via MP-Opt-Model’s com-
mon QP solver interface qps master, or MILP problems via miqps master, with the
algorithm option set to 'GLPK', or by calling qps glpk or miqps glpk directly.

B.5 Gurobi – High-performance LP, QP, MILP and MIQP
Solvers

Gurobi [17] is a collection of optimization tools that includes high-performance solvers
for large-scale linear programming (LP) and quadratic programming (QP) problems,
among others. The project was started by some former CPLEX developers. More
information is available at https://www.gurobi.com/.

Although Gurobi is a commercial package, at the time of this writing their is a free
academic license available. See https://www.gurobi.com/academia/for-universities
for more details.

When Gurobi is installed, it can be used to solve general LP and QP problems
via MP-Opt-Model’s common QP solver interface qps master, or MILP and MIQP
problems via miqps master, with the algorithm option set to 'GUROBI', or by calling
qps gurobi or miqps gurobi directly.

B.6 Ipopt – Interior Point Optimizer

Ipopt [18] (Interior Point OPTimizer, pronounced I-P-Opt) is a software package
for large-scale nonlinear optimization. It is is written in C++ and is released as
open source code under the Common Public License (CPL). It is available from the
COIN-OR initiative at https://github.com/coin-or/Ipopt. The code has been
written by Carl Laird and Andreas Wächter, who is the COIN project leader for
Ipopt.

MP-Opt-Model requires the Matlab MEX interface to Ipopt, which is included
in some versions of the Ipopt source distribution, but must be built separately.
Additional information on the MEX interface is available at https://projects.

coin-or.org/Ipopt/wiki/MatlabInterface. Please consult the Ipopt documen-
tation, web-site and mailing lists for help in building and installing the Ipopt Mat-
lab interface. This interface uses callbacks to Matlab functions to evaluate the
objective function and its gradient, the constraint values and Jacobian, and the
Hessian of the Lagrangian.

Precompiled MEX binaries for a high-performance version of Ipopt, using the

105

https://www.gurobi.com/
https://www.gurobi.com/academia/for-universities
https://github.com/coin-or/Ipopt
https://projects.coin-or.org/Ipopt/wiki/MatlabInterface
https://projects.coin-or.org/Ipopt/wiki/MatlabInterface

PARDISO linear solver [19, 20], are available from the PARDISO project35. For
Microsoft Windows users, a pre-compiled MEX version of Ipopt (and numerous
other solvers, such as CLP and GLPK) are easily installable as part of the OPTI
Toolbox36 [15].

When installed, Ipopt can be used by MP-Opt-Model to solve general LP, QP
and NLP problems via MP-Opt-Model’s common QP and NLP solver interfaces
qps master and nlps master with the algorithm option set to 'IPOPT', or by calling
qps ipopt or nlps ipopt directly.

B.7 Artelys Knitro – Non-Linear Programming Solver

Artelys Knitro [21] is a general purpose optimization solver specializing in nonlinear
problems, available from Artelys. As of version 9, Knitro includes a native Matlab
interface, knitromatlab37. More information is available at https://www.artelys.

com/solvers/knitro/ and https://www.artelys.com/docs/knitro/.
Although Artelys Knitro is a commercial package, at the time of this writing

there is a free academic license available, with details on their download page.
When installed, Knitro’s Matlab interface function, knitromatlab or ktrlink,

can be used by MP-Opt-Model to solve general NLP problems via MP-Opt-Model’s
common NLP solver interface nlps master with the algorithm option set to 'KNITRO',
or by calling nlps knitro directly.

B.8 MOSEK – High-performance LP, QP, MILP and MIQP
Solvers

MOSEK is a collection of optimization tools that includes high-performance solvers
for large-scale linear programming (LP) and quadratic programming (QP) problems,
among others. More information is available at https://www.mosek.com/.

Although MOSEK is a commercial package, at the time of this writing there is a
free academic license available. See https://www.mosek.com/products/academic-licenses/
for more details.

When the Matlab interface to MOSEK is installed, it can be used to solve
general LP and QP problems via MP-Opt-Model’s common QP solver interface

35See https://pardiso-project.org/ for the download links.
36The OPTI Toolbox is available from https://www.inverseproblem.co.nz/OPTI/.
37Earlier versions required the Matlab Optimization Toolbox from The MathWorks, which

included an interface to the Knitro libraries called ktrlink, but the libraries themselves still had
to be acquired directly from Ziena Optimization, LLC (subsequently acquired by Artelys).

106

https://www.artelys.com/solvers/knitro/
https://www.artelys.com/solvers/knitro/
https://www.artelys.com/docs/knitro/
https://www.mosek.com/
https://www.mosek.com/products/academic-licenses/
https://pardiso-project.org/
https://www.inverseproblem.co.nz/OPTI/

qps master, or MILP and MIQP problems via miqps master, with the algorithm
option set to 'MOSEK', or by calling qps mosek or miqps mosek directly.

B.9 Optimization Toolbox – LP, QP, NLP, NLEQ and MILP
Solvers

Matlab’s Optimization Toolbox [22, 23], available from The MathWorks, provides
a number of high-performance solvers that MP-Opt-Model can take advantage of.

It includes fsolve for nonlinear equations (NLEQ), fmincon for nonlinear pro-
gramming problems (NLP), and linprog and quadprog for linear programming (LP)
and quadratic programming (QP) problems, respectively. For mixed-integer linear
programs (MILP), it provides intlingprog. Each solver implements a number of
different solution algorithms. More information is available from The MathWorks,
Inc. at https://www.mathworks.com/.

When available, the Optimization Toolbox solvers can be used to solve general
LP and QP problems via MP-Opt-Model’s common QP solver interface qps master,
or MILP problems via miqps master, with the algorithm option set to 'OT', or by
calling qps ot or miqps ot directly. It can be to solve general NLP problems via
MP-Opt-Model’s common NLP solver interface nlps master with the algorithm op-
tion set to 'FMINCON', or by calling nlps fmincon directly. It can also be used to
solve general NLEQ problems via MP-Opt-Model’s common NLEQ solver interface
nleqs master with the algorithm option set to 'FSOLVE', or by calling nleqs fsolve

directly.

B.10 OSQP – Operator Splitting Quadratic Program Solver

OSQP [24] is a numerical optimization package for solving convex quadratic pro-
gramming problems. It uses a custom ADMM-based first-order method requiring
only a single matrix factorization in the setup phase. More information is available
at https://osqp.org.

OSQP is a free, open-source package distributed under the Apache 2.0 License.
When the Matlab interface to OSQP is installed, it can be used to solve general

LP and QP problems via MP-Opt-Model’s common QP solver interface qps master

with the algorithm option set to 'OSQP', or by calling qps osqp directly.

107

https://www.mathworks.com/
https://osqp.org

Appendix C Release History

The full release history can be found in CHANGES.md or online at https://github.

com/MATPOWER/mp-opt-model/blob/master/CHANGES.md.

C.1 Version 0.7 – Jun 20, 2019

This release history begins with the code that was part of the Matpower 7.0 release.

C.2 Version 0.8 – Apr 29, 2020 (not released publicly)

This version consists of functionality moved directly from Matpower.38 There is
no User’s Manual yet.

New Features

• New unified interface nlps master() for nonlinear programming solvers MIPS,
fmincon, Ipopt and Artelys Knitro.

• New functions:

– mpopt2nlpopt() creates or modifies an options struct for nlps master()

from a Matpower options struct.

– nlps fmincon() provides implementation of unified nonlinear program-
ming solver interface for fmincon.

– nlps ipopt() provides implementation of unified nonlinear programming
solver interface interface for Ipopt.

– nlps knitro() provides implementation of unified nonlinear programming
solver interface interface for Ipopt.

– nlps master() provides a single wrapper function for calling any of MP-Opt-Model’s
nonlinear programming solvers.

Other Improvements

• Significant performance improvement for some problems when constructing
sparse matrices for linear constraints or quadratic costs. Thanks to Daniel
Muldrew.

38From the current master branch in the Matpower GitHub repository at the time.

108

https://github.com/MATPOWER/mp-opt-model/blob/master/CHANGES.md
https://github.com/MATPOWER/mp-opt-model/blob/master/CHANGES.md
https://github.com/MATPOWER/mp-opt-model/blob/master/CHANGES.md
https://matpower.org
https://github.com/MATPOWER/mips
https://github.com/MATPOWER/matpower

• Significant performance improvement for CPLEX on small problems by elimi-
nating call to cplexoptimset(), which was a huge bottleneck.

• Add four new methods to opt model class:

– copy() – works around issues with inheritance in constructors that was
preventing copy constructor from working in Octave 5.2 and earlier (see
also https://savannah.gnu.org/bugs/?52614)

– is mixed integer() – returns true if the model includes any binary or
integer variables

– problem type() – returns one of the following strings, based on the char-
acteristics of the variables, costs and constraints in the model:

∗ 'LP' – linear program

∗ 'QP' – quadratic program

∗ 'NLP' – nonlinear program

∗ 'MILP' – mixed-integer linear program

∗ 'MIQP' – mixed-integer quadratic program

∗ 'MINLP' – mixed-integer nonlinear program

– solve() - solves the model using qps master(), miqps master(), or nlps master(),
depending on the problem type ('MINLP' problems are not yet imple-
mented)

Bugs Fixed

• Artelys Knitro 12.1 compatibility fix.

• Fix CPLEX 12.10 compatibility issue #90.

• Fix issue with missing objective function value from miqps mosek() and qps mosek()

when return status is “Stalled at or near optimal solution.”

• Fix bug orginally in ktropf solver() (code now moved to nlps knitro())
where Artelys Knitro was still using fmincon options.

Incompatible Changes

• Modify order of default output arguments of opt model/get idx() (again), re-
moving the one related to legacy costs.

109

https://savannah.gnu.org/bugs/?52614

• MP-Opt-Model has renamed the following functions and modified the order of
their input args so that the MP-Opt-Model object appears first. Ideally, these
would be defined as methods of the opt model class, but Octave 4.2 and earlier
is not able to find them via a function handle (as used in the solve() method)
if they are inherited by a sub-class.

– opf consfcn() → nlp consfcn()

– opf costfcn() → nlp costfcn()

– opf hessfcn() → nlp hessfcn()

C.3 Version 1.0 – released May 8, 2020

This is the first public release of MP-Opt-Model as its own package. The MP-Opt-Model
1.0 User’s Manual is available online.39

New Documentation

• Add MP-Opt-Model User’s Manual with LATEX source code included in docs/src.

Other Improvements

• Refactor opt model class to inherit from new abstract base class mp idx manager

which can be used to manage the indexing of other sets of parameters, etc. in
other contexts.

C.4 Version 2.0 – released Jul 8, 2020

The MP-Opt-Model 2.0 User’s Manual is available online.40

New Features

• Add new 'fsolve' tag to have fcn() to check for availability of fsolve() func-
tion.

• Add nleqs master() function as unified interface for solving nonlinear equa-
tions, including implementations for fsolve and Newton’s method in functions
nleqs fsolve() and nleqs newton(), respectively.

39https://matpower.org/docs/MP-Opt-Model-manual-1.0.pdf
40https://matpower.org/docs/MP-Opt-Model-manual-2.0.pdf

110

https://matpower.org/docs/MP-Opt-Model-manual-1.0.pdf
https://matpower.org/docs/MP-Opt-Model-manual-1.0.pdf
https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf
https://matpower.org/docs/MP-Opt-Model-manual-2.0.pdf
https://matpower.org/docs/MP-Opt-Model-manual-1.0.pdf
https://matpower.org/docs/MP-Opt-Model-manual-2.0.pdf

• Add support for nonlinear equations (NLEQ) to opt model. For problems with
only nonlinear equality constraints and no costs, the problem type() method
returns 'NLEQ' and the solve() method calls nleqs master() to solve the prob-
lem.

• New functions:

– mpopt2nleqopt() creates or modifies an options struct for nleqs master()

from a Matpower options struct.

– nleqs fsolve() provides implementation of unified nonlinear equation
solver interface for fsolve.

– nleqs master() provides a single wrapper function for calling any of MP-Opt-Model’s
nonlinear equation solvers.

– nleqs newton() provides implementation of Newton’s method solver with
a unified nonlinear equation solver interface.

– opt model/params nln constraint() method returns parameters for a named
(and optionally indexed) set of nonlinear constraints.

– opt model/params nln cost() method returns parameters for a named
(and optionally indexed) set of general nonlinear costs.

Other Changes

• Add to eval nln constraint() method the ability to compute constraints for
a single named set.

• Skip evaluation of gradient if eval nln constraint() is called with a single
output argument.

• Remove redundant MIPS tests from test mp opt model.m.

• Add tests for solving LP/QP, MILP/MIQP, NLP and NLEQ problems via
opt model/solve().

• Add Table 6.1 of valid have fcn() input tags to User’s Manual.

111

C.5 Version 2.1 – released Aug 25, 2020

The MP-Opt-Model 2.1 User’s Manual is available online.41

New Features

• Fast-decoupled Newton’s and Gauss-Seidel solvers for nonlinear equations.

• New linear equation ('LEQ') problem type for models with equal number of
variables and linear equality constraints, no costs, and no inequality or nonlin-
ear equality constraints. Solved via mplinsolve().

• The solve() method of opt model can now automatically handle mixed systems
of equations, with both linear and nonlinear equality constraints.

• New core nonlinear equation solver function with arbitrary, user-defined update
function, used to implement Gauss-Seidel and Newton solvers.

• New functions:

– nleqs fd newton() solves a nonlinear set of equations via a fast-decoupled
Newton’s method.

– nleqs gauss seidel() solves a nonlinear set of equations via a Gauss-
Seidel method.

– nleqs core() implements core nonlinear equation solver with arbitrary
update function.

Incompatible Changes

• In output return value from nleqs newton(), changed the normF field of output.hist
to normf, for consistency in using lowercase f everywhere.

41https://matpower.org/docs/MP-Opt-Model-manual-2.1.pdf

112

https://matpower.org/docs/MP-Opt-Model-manual-2.1.pdf
https://matpower.org/docs/MP-Opt-Model-manual-2.1.pdf

C.6 Version 3.0 – released Oct 8, 2020

The MP-Opt-Model 3.0 User’s Manual is available online.42

New Features

• Support for OSQP solver for LP and QP problems (https://osqp.org).

• Support for modifying parameters of an existing MP-Opt-Model object.

• Support for extracting specific named/indexed variables, costs, constraint val-
ues and shadow prices, etc. from a solved MP-Opt-Model object.

• Results of the solve() method saved to the soln field of the MP-Opt-Model
object.

• Allow v0, vl, and vu inputs to opt model/add var() method, and l and u inputs
to opt model/add lin constraint() to be scalars that get expanded automati-
cally to the appropriate vector dimension.

• New functions:

– opt model/set params() method modifies parameters for a given named
set of existing variables, costs, or constraints of an MP-Opt-Model object.

– opt model/get soln() method extracts solved results for a given named
set of variables, constraints or costs.

– opt model/parse soln() method returns a complete set of solution vector
and shadow price values for a solved model.

– opt model/eval lin constraint() method computes the constraint values
for the full set or an individual named subset of linear constraints.

– qps osqp() provides standardized interface for using OSQP to solve LP/QP
problems

– osqp options() initializes options for OSQP solver

– osqpver() returns/displays version information for OSQP

– . . . plus 29 individual feature detection functions for have feature(), see
Table A-8 for details.

42https://matpower.org/docs/MP-Opt-Model-manual-3.0.pdf

113

https://matpower.org/docs/MP-Opt-Model-manual-3.0.pdf
https://osqp.org
https://osqp.org
https://osqp.org
https://osqp.org
https://osqp.org
https://matpower.org/docs/MP-Opt-Model-manual-3.0.pdf

Bugs Fixed

• Starting point supplied to solve() via opt.x0 is no longer ignored for nonlinear
equations.

• Calling params var() method with empty idx no longer results in fatal error.

• For opt model, incorrect evaluation of constant term has been fixed for vector
valued quadratic costs with constant term supplied as a vector.

Other Changes

• Simplified logic to determine whether a quadratic cost for an MP-Opt-Model
object is vector vs. scalar valued. If the quadratic coefficient is supplied as a
matrix, the cost is scalar varied, otherwise it is vector valued.

• Deprecated have fcn() and made it a simple wrapper around the new modular
and extensible have feature(), which has now been moved to MP-Test.43

C.7 Version 4.0 – released Oct 18, 2021

The MP-Opt-Model 4.0 User’s Manual is available online.44

New Features

• Support for new class of problems – parameterized nonlinear equations (PNE).
Either create a model with only equality constraints (no inequalities or costs)
and with number of variables equal to 1 more than number of constraints, or
call pnes master() directly. See Section 4.5 of User’s Manual for details.

– Predictor/corrector numerical continuation method for tracing solution
curves for PNE problems.

– Plotting of solution curves.

– User-defined event functions and callback functions.

– Warm-start capabilities.

Thanks to Shrirang Abhyankar and Alexander Flueck for contributions to this
feature, which is based on the continuation power flow code in Matpower 7.1.

43MP-Test is available at https://github.com/MATPOWER/mptest.
44https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf

114

https://github.com/MATPOWER/mptest
https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf
https://github.com/MATPOWER/mptest
https://github.com/MATPOWER/mptest
https://matpower.org/docs/MP-Opt-Model-manual-4.0.pdf

• Optional threshold for detecting failure of LEQ solve, by setting the leq opt.thresh

option. If the absolute value of any element of the solution vector exceeds the
threshold, exitflag is set to 0, indicating failure.

• New functions:

– pnes master() provides unified interface for parameterized nonlinear equa-
tion (PNE) solvers.

– pne callback default() collects PNE results and optionally plots solution
curve.

– pne callback nose() handles event signaling a nose point or limit has been
reached.

– pne callback target lam() handles event signaling a target value of pa-
rameter λ has been reached.

– pne detect events() detects events from event function values.

– pne detected event() returns detected event details for events with a par-
ticular name.

– pne event nose() detects the limit or nose point.

– pne event target lam() detects a target λ value.

– pne pfcn arc length() implements arc length parameterization.

– pne pfcn natural() implements natural parameterization.

– pne pfcn pseudo arc length() implements pseudo arc length parameteri-
zation.

– pne register callbacks() registers callback functions.

– pne register events() registers event functions.

– mp idx manager/set type idx map() method returns information about map-
ping of indices for a given set type back to the corresponding named (and
possibly indexed) sets.

– mpopt2pneopt() creates or modifies an options struct for pnes master()

from a Matpower options struct.

Bugs Fixed

• Calling the problem type() or is mixed integer() method on an empty model
no longer causes a fatal error.

115

Other Changes

• Labels from the set types property are now used as headers for opt model/display()

to simplify things facilitate use by sub-classes.

• Refactored describe idx into a new method, set type idx map, that returns in
information in a programmatically usable form, and an updated describe idx

that calls the new method, then formats the results in the expected char ar-
ray(s).

116

References

[1] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower:
Steady-State Operations, Planning and Analysis Tools for Power Systems Re-
search and Education,” Power Systems, IEEE Transactions on, vol. 26, no. 1,
pp. 12–19, Feb. 2011. doi: 10.1109/TPWRS.2010.2051168 1.1

[2] R. D. Zimmerman, C. E. Murillo-Sánchez (2020). Matpower
[Software]. Available: https://matpower.org
doi: 10.5281/zenodo.3236535 1.1

[3] John W. Eaton, David Bateman, Søren Hauberg, Rik Wehbring (2015). GNU
Octave version 4.0.0 manual: a high-level interactive language for numeri-
cal computations. Available: https://www.gnu.org/software/octave/doc/

interpreter/. 1, 4

[4] The BSD 3-Clause License. [Online]. Available: https://opensource.org/

licenses/BSD-3-Clause. 1.2

[5] R. D. Zimmerman. MP-Opt-Model User’s Manual. 2021. [Online]. Available:
https://matpower.org/docs/MP-Opt-Model-manual.pdf

doi: 10.5281/zenodo.3818002 1.3

[6] H. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas,
“On Computational Issues of Market-Based Optimal Power Flow,” Power Sys-
tems, IEEE Transactions on, vol. 22, no. 3, pp. 1185–1193, August 2007.
doi: 10.1109/TPWRS.2007.901301 2.1

[7] R. D. Zimmerman, H. Wang. Matpower Interior Point Solver (MIPS)
User’s Manual. 2020. [Online]. Available: https://matpower.org/docs/

MIPS-manual.pdf

doi: 10.5281/zenodo.3236506 2.1

[8] E. L. Allgower, K. Georg, Introduction to Numerical Continua-
tion Methods, Society for Industrial and Applied Mathematics, 2003.
doi: 10.1137/1.9780898719154 4.5

[9] H.-D. Chiang, A. Flueck, K. Shah, and N. Balu, “CPFLOW: A Practical Tool
for Tracing Power System Steady-State Stationary Behavior Due to Load and
Generation Variations,” Power Systems, IEEE Transactions on, vol. 10, no. 2,
pp. 623–634, May 1995. 4.5.1

117

https://doi.org/10.1109/TPWRS.2010.2051168
https://matpower.org
https://doi.org/10.5281/zenodo.3236535
https://www.gnu.org/software/octave/doc/interpreter/
https://www.gnu.org/software/octave/doc/interpreter/
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://matpower.org/docs/MP-Opt-Model-manual.pdf
https://doi.org/10.5281/zenodo.3818002
https://doi.org/10.1109/TPWRS.2007.901301
https://matpower.org/docs/MIPS-manual.pdf
https://matpower.org/docs/MIPS-manual.pdf
https://doi.org/10.5281/zenodo.3236506
https://doi.org/10.1137/1.9780898719154

[10] S. H. Li and H. D. Chiang, “Nonlinear Predictors and Hybrid Corrector for
Fast Continuation Power Flow”, Generation, Transmission Distribution, IET,
2(3):341–354, 2008. 4.5.1

[11] H. Mori and S. Yamada, “Continuation Power Flow with the Nonlinear Predictor
of the Lagrange’s Polynomial Interpolation Formula, ” In Transmission and
Distribution Conference and Exhibition 2002: Asia Pacific. IEEE/PES, vol. 2,
pp. 1133–1138, Oct 6–10, 2002. 4.5.1

[12] BPMPD MEX. [Online]. Available: http://www.pserc.cornell.edu/bpmpd/.
B.1

[13] C. Mészáros, The Efficient Implementation of Interior Point Methods for Linear
Programming and their Applications, Ph.D. thesis, Eötvös Loránd University of
Sciences, Budapest, Hungary, 1996. B.1

[14] COIN-OR Linear Programming (CLP) Solver. [Online]. Available: https://

github.com/coin-or/Clp. B.2

[15] J. Currie and D. I. Wilson,“OPTI: Lowering the Barrier Between Open Source
Optimizers and the Industrial MATLAB User,” Foundations of Computer-Aided
Process Operations, Georgia, USA, 2012. 6.4.4, B.2, B.4, B.6

[16] GLPK. [Online]. Available: https://www.gnu.org/software/glpk/. B.4

[17] Gurobi Optimization, Inc., “Gurobi Optimizer Reference Manual,” 2016. [On-
line]. Available: https://www.gurobi.com/. B.5

[18] A. Wächter and L. T. Biegler, “On the implementation of a primal-dual inte-
rior point filter line search algorithm for large-scale nonlinear programming,”
Mathematical Programming, 106(1):25—57, 2006. B.6

[19] O. Shenk and K. Gärtner, “Solving unsymmetric sparse systems of linear
equations with PARDISO,” Journal of Future Generation Computer Systems,
20(3):475–487, 2004. B.6

[20] A. Kuzmin, M. Luisier and O. Shenk, “Fast methods for computing selected
elements of the Greens function in massively parallel nanoelectronic device sim-
ulations,” in F. Wolf, B. Mohr and D. Mey, editors, Euro-Par 2013 Parallel Pro-
cessing, Vol. 8097, Lecture Notes in Computer Science, pp. 533–544, Springer
Berlin Heidelberg, 2013. B.6

118

http://www.pserc.cornell.edu/bpmpd/
https://github.com/coin-or/Clp
https://github.com/coin-or/Clp
https://www.gnu.org/software/glpk/
https://www.gurobi.com/

[21] R. H. Byrd, J. Nocedal, and R. A. Waltz, “KNITRO: An Integrated Package for
Nonlinear Optimization”, Large-Scale Nonlinear Optimization, G. di Pillo and
M. Roma, eds, pp. 35–59 (2006), Springer-Verlag. doi: 10.1007/0-387-30065-1 4
B.7

[22] Optimization Toolbox, The MathWorks, Inc. [Online]. Available: https://www.
mathworks.com/products/optimization/. B.9

[23] Optimization Toolbox Users’s Guide, The MathWorks, Inc., 2016. [On-
line]. Available: https://www.mathworks.com/help/releases/R2016b/pdf_

doc/optim/optim_tb.pdf. B.9

[24] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, S., “OSQP: An
Operator Splitting Solver for Quadratic Programs”, Mathematical Programming
Computation, 2020. doi: 10.1007/s12532-020-00179-2 B.10

119

https://doi.org/10.1007/0-387-30065-1_4
https://www.mathworks.com/products/optimization/
https://www.mathworks.com/products/optimization/
https://www.mathworks.com/help/releases/R2016b/pdf_doc/optim/optim_tb.pdf
https://www.mathworks.com/help/releases/R2016b/pdf_doc/optim/optim_tb.pdf
https://doi.org/10.1007/s12532-020-00179-2

	Introduction
	Background
	License and Terms of Use
	Citing MP-Opt-Model
	MP-Opt-Model Development

	Getting Started
	System Requirements
	Installation
	Sample Usage
	Documentation

	MP-Opt-Model – Overview
	Solver Interface Functions
	LP/QP Solvers – qps_master
	QP Example

	MILP/MIQP Solvers – miqps_master
	MILP Example

	NLP Solvers – nlps_master
	NLP Example 1
	NLP Example 2

	Nonlinear Equation Solvers – nleqs_master
	NLEQ Example 1
	NLEQ Example 2

	Parameterized Nonlinear Equation Solver – pnes_master
	Parameterization
	Predictor
	Corrector
	Step Length Control
	Event Detection and Location
	Callback Functions
	pnes_master
	PNE Example

	Optimization Model Class – opt_model
	Adding Variables
	Variable Subsets

	Adding Constraints
	Linear Constraints
	General Nonlinear Constraints

	Adding Costs
	Quadratic Costs
	General Nonlinear Costs

	Solving the Model
	Accessing the Model
	Indexing
	Variables
	Constraints
	Costs
	Model Solution

	Modifying the Model
	Indexed Sets
	Miscellaneous Methods
	Public Methods
	Private Methods

	Matpower Index Manager Base Class – mp_idx_manager
	Reference
	Properties
	Methods

	Utility Functions
	have_fcn
	mpomver
	nested_struct_copy
	Private Feature Detection Functions
	have_feature_bpmpd
	have_feature_catchme
	have_feature_clp
	have_feature_opti_clp
	have_feature_cplex
	have_feature_evalc
	have_feature_fmincon
	have_feature_fmincon_ipm
	have_feature_fsolve
	have_feature_glpk
	have_feature_gurobi
	have_feature_intlinprog
	have_feature_ipopt
	have_feature_ipopt_auxdata
	have_feature_isequaln
	have_feature_knitro
	have_feature_knitromatlab
	have_feature_ktrlink
	have_feature_linprog
	have_feature_linprog_ds
	have_feature_mosek
	have_feature_optim
	have_feature_optimoptions
	have_feature_osqp
	have_feature_quadprog
	have_feature_quadprog_ls
	have_feature_sdpt3
	have_feature_sedumi
	have_feature_yalmip

	Matpower-related Functions
	mpopt2nleqopt
	mpopt2nlpopt
	mpopt2qpopt
	mpopt2pneopt

	Acknowledgments
	Appendix MP-Opt-Model Files, Functions and Classes
	Appendix Optional Packages
	BPMPD_MEX – MEX interface for BPMPD
	CLP – COIN-OR Linear Programming
	CPLEX – High-performance LP, QP, MILP and MIQP Solvers
	GLPK – GNU Linear Programming Kit
	Gurobi – High-performance LP, QP, MILP and MIQP Solvers
	Ipopt – Interior Point Optimizer
	Artelys Knitro – Non-Linear Programming Solver
	MOSEK – High-performance LP, QP, MILP and MIQP Solvers
	Optimization Toolbox – LP, QP, NLP, NLEQ and MILP Solvers
	OSQP – Operator Splitting Quadratic Program Solver

	Appendix Release History
	Version 0.7 – Jun 20, 2019
	Version 0.8 – Apr 29, 2020 (not released publicly)
	Version 1.0 – released May 8, 2020
	Version 2.0 – released Jul 8, 2020
	Version 2.1 – released Aug 25, 2020
	Version 3.0 – released Oct 8, 2020
	Version 4.0 – released Oct 18, 2021

	References

