
Matpower Interior Point Solver
MIPS 1.3

User’s Manual

Ray D. Zimmerman Hongye Wang

October 30, 2018

© 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 Power Systems Engineering Research Center (PSerc)

All Rights Reserved

Contents

1 Introduction 4
1.1 Background . 4
1.2 License and Terms of Use . 5
1.3 Citing MIPS . 6
1.4 MIPS Development . 6

2 Getting Started 6
2.1 System Requirements . 6
2.2 Installation . 7
2.3 Documentation . 7

3 MIPS – Matpower Interior Point Solver 9
3.1 Example 1 . 11
3.2 Example 2 . 13
3.3 Quadratic Programming Solver . 15
3.4 Primal-Dual Interior Point Algorithm 16

3.4.1 Notation . 16
3.4.2 Problem Formulation and Lagrangian 17
3.4.3 First Order Optimality Conditions 18
3.4.4 Newton Step . 19

Appendix A MIPS Files and Functions 22

Appendix B PARDISO – Parallel Sparse Direct and Multi-Recursive
Iterative Linear Solvers 23

Appendix C Release History 24
C.1 Version 1.0 – released Feb 7, 2011 . 24
C.2 Version 1.0.1 – released Apr 30, 2012 24
C.3 Version 1.0.2 – released Nov 5, 2013 24
C.4 Version 1.1 – released Dec 17, 2014 25
C.5 Version 1.2 – released Mar 20, 2015 25
C.6 Version 1.2.1 – released Jun 1, 2016 26
C.7 Version 1.2.2 – released Dec 16, 2016 26
C.8 Version 1.3 – released Oct 30, 2018 27

References 28

2

List of Tables

3-1 Input Arguments for mips . 10
3-2 Output Arguments for mips . 11
3-3 Options for mips . 12
A-1 MIPS Files and Functions . 22

3

1 Introduction

1.1 Background

Matpower Interior Point Solver (MIPS) is a package of Matlab language M-files1

for solving non-linear programming problems (NLPs) using a primal dual interior
point method. The MIPS project page can be found at:

https://github.com/MATPOWER/mips

MIPS is based on code written in C language [1] by Hongye Wang as a gradu-
ate student at Cornell University for optimal power flow applications [2, 3]. It was
later ported to the Matlab language by Ray D. Zimmerman of PSerc2 at Cornell
University for use in Matpower [4, 5].

Up until version 6 of Matpower, MIPS was distributed only as an integrated
part of Matpower. After the release of Matpower 6, MIPS was split out into
a separate project, though it is still included with Matpower as its default AC
optimal power flow solver.

1Also compatible with GNU Octave [6].
2http://pserc.org/

4

https://github.com/MATPOWER/mips
https://github.com/MATPOWER/mips
https://github.com/MATPOWER/mips
http://www.pserc.cornell.edu/matpower/
http://pserc.org/

1.2 License and Terms of Use

The code in MIPS is distributed under the 3-clause BSD license3 [7]. The full text
of the license can be found in the LICENSE file at the top level of the distribution or at
https://github.com/MATPOWER/mips/blob/master/LICENSE and reads as follows.

Copyright (c) 1996-2016, Power Systems Engineering Research Center

(PSERC) and individual contributors (see AUTHORS file for details).

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

3Versions 1.0 through 1.1 of MIPS were distributed under version 3.0 of the GNU General Public
License (GPL) [8] with an exception added to clarify our intention to allow MIPS to interface with
Matlab as well as any other Matlab code or MEX-files a user may have installed, regardless of
their licensing terms. The full text of the GPL can be found at http://www.gnu.org/licenses/

gpl-3.0.txt.

5

https://github.com/MATPOWER/mips/blob/master/LICENSE
http://www.gnu.org/licenses/gpl-3.0.txt
http://www.gnu.org/licenses/gpl-3.0.txt

1.3 Citing MIPS

While not required by the terms of the license, we do request that publications
derived from the use of MIPS explicitly acknowledge that fact by citing reference [3].

H. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas, “On Compu-
tational Issues of Market-Based Optimal Power Flow,” Power Systems, IEEE Trans-
actions on, vol. 22, no. 3, pp. 1185–1193, August 2007.
DOI: 10.1109/TPWRS.2010.2051168

1.4 MIPS Development

Following the release of MIPS 1.2.2 (with Matpower 6.0), the MIPS project moved
to an open development paradigm, hosted on the MIPS GitHub project page:

https://github.com/MATPOWER/mips

The MIPS GitHub project hosts the public Git code repository as well as a public
issue tracker for handling bug reports, patches, and other issues and contributions.
There are separate GitHub hosted repositories and issue trackers for Matpower,
MOST, MIPS and the testing framework used by all of them, MP-Test, all available
from https://github.com/MATPOWER/.

2 Getting Started

2.1 System Requirements

To use MIPS 1.3 you will need:

• Matlab® version 7 (R14) or later4, or

• GNU Octave version 3.4 or later5

• MP-Test, for running the MIPS test suite.6

For the hardware requirements, please refer to the system requirements for the
version of Matlab7 or Octave that you are using.

4Matlab is available from The MathWorks, Inc. (http://www.mathworks.com/). Matlab is
a registered trademark of The MathWorks, Inc.

5GNU Octave [6] is free software, available online at http://www.gnu.org/software/octave/.
MIPS 1.3 may work on earlier versions of Octave, but it has not been tested on versions prior to
3.4.

6MP-Test is available at https://github.com/MATPOWER/mptest.
7http://www.mathworks.com/support/sysreq/previous_releases.html

6

https://doi.org/10.1109/TPWRS.2010.2051168
https://github.com/MATPOWER/mips
https://github.com/MATPOWER/
https://github.com/MATPOWER/mptest
http://www.mathworks.com/
http://www.gnu.org/software/octave/
https://github.com/MATPOWER/mptest
http://www.mathworks.com/support/sysreq/previous_releases.html

In this manual, references to Matlab usually apply to Octave as well.

2.2 Installation

Installation and use of MIPS requires familiarity with the basic operation of Matlab
or Octave, including setting up your Matlab path.

Step 1: Clone the repository or download and extract the zip file of the MIPS
distribution from the MIPS project page8 to the location of your choice.
The files in the resulting mips or mipsXXX directory, where XXX depends on
the version of MIPS, should not need to be modified, so it is recommended
that they be kept separate from your own code. We will use <MIPS> to
denote the path to this directory.

Step 2: Add the following directories to your Matlab or Octave path:

• <MIPS>/lib – core MIPS functions

• <MIPS>/lib/t – test scripts for MIPS

Step 3: At the Matlab prompt, type test mips to run the test suite and verify that
MIPS is properly installed and functioning.9 The result should resemble the
following:

>> test_mips

t_mplinsolve......ok (6 of 44 skipped)

t_mips............ok

t_mips_pardiso....ok (60 of 60 skipped)

t_qps_mips........ok

All tests successful (170 passed, 66 skipped of 236)

Elapsed time 0.09 seconds.

2.3 Documentation

There are two primary sources of documentation for MIPS. The first is this manual,
which gives an overview of the capabilities and structure of MIPS and describes
the formulations behind the code. It can be found in your MIPS distribution at
<MIPS>/docs/MIPS-manual.pdf and the latest version is always available at: https:
//github.com/MATPOWER/mips/blob/master/docs/MIPS-manual.pdf.

8https://github.com/MATPOWER/mips
9The tests require a functioning installation of MP-Test.

7

https://github.com/MATPOWER/mips{}
http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.3.pdf
https://github.com/MATPOWER/mips/blob/master/docs/MIPS-manual.pdf
https://github.com/MATPOWER/mips/blob/master/docs/MIPS-manual.pdf
https://github.com/MATPOWER/mips/blob/master/docs/MIPS-manual.pdf
https://github.com/MATPOWER/mips
https://github.com/MATPOWER/mptest

And second is the built-in help command. As with the built-in functions and
toolbox routines in Matlab and Octave, you can type help followed by the name
of a command or M-file to get help on that particular function. All of the M-files in
MIPS have such documentation and this should be considered the main reference for
the calling options for each function. See Appendix A for a list of MIPS functions.

8

3 MIPS – Matpower Interior Point Solver

MIPS, that is, the Matpower Interior Point Solver, is a primal-dual interior point
solver implemented in pure Matlab code, derived from the MEX implementation
of the algorithms included in TSPOPF [1] and described in [2, 3].

This solver has application to general nonlinear optimization problems of the
following form:

min
x
f(x) (3.1)

subject to

g(x) = 0 (3.2)

h(x) ≤ 0 (3.3)

l ≤ Ax ≤ u (3.4)

xmin ≤ x ≤ xmax (3.5)

where f : Rn → R, g : Rn → Rm and h : Rn → Rp.
The solver is implemented by the mips function, which can be called as follows,

[x, f, exitflag, output, lambda] = ...

mips(f_fcn, x0, A, l, u, xmin, xmax, gh_fcn, hess_fcn, opt);

where the input and output arguments are described in Tables 3-1 and 3-2, respec-
tively. Alternatively, the input arguments can be packaged as fields in a problem

struct and passed in as a single argument, where all fields except f fcn and x0 are
optional.

[x, f, exitflag, output, lambda] = mips(problem);

The calling syntax is nearly identical to that used by fmincon from Matlab’s
Optimization Toolbox. The primary difference is that the linear constraints are
specified in terms of a single doubly-bounded linear function (l ≤ Ax ≤ u) as opposed
to separate equality constrained (Aeqx = beq) and upper bounded (Ax ≤ b) functions.
Internally, equality constraints are handled explicitly and determined at run-time
based on the values of l and u.

The user-defined functions for evaluating the objective function, constraints and
Hessian are identical to those required by fmincon, with one exception described
below for the Hessian evaluation function. Specifically, f fcn should return f as the
scalar objective function value f(x), df as an n × 1 vector equal to ∇f and, unless

9

Table 3-1: Input Arguments for mips†

name description

f fcn Handle to a function that evaluates the objective function, its gradients and Hessian‡

for a given value of x. Calling syntax for this function:
[f, df, d2f] = f fcn(x)

x0 Starting value of optimization vector x.
A, l, u Define the optional linear constraints l ≤ Ax ≤ u. Default values for the elements of

l and u are -Inf and Inf, respectively.
xmin, xmax Optional lower and upper bounds on the x variables, defaults are -Inf and Inf,

respectively.
gh fcn Handle to function that evaluates the optional nonlinear constraints and their gra-

dients for a given value of x. Calling syntax for this function is:
[h, g, dh, dg] = gh fcn(x)

hess fcn Handle to function that computes the Hessian‡of the Lagrangian for given values
of x, λ and µ, where λ and µ are the multipliers on the equality and inequality
constraints, g and h, respectively. The calling syntax for this function is:

Lxx = hess fcn(x, lam, cost mult),
where λ = lam.eqnonlin, µ = lam.ineqnonlin and cost mult is a parameter used
to scale the objective function

opt Optional options structure with fields, all of which are also optional, described in
Table 3-3.

problem Alternative, single argument input struct with fields corresponding to arguments
above.

† All inputs are optional except f fcn and x0.
‡ If gh fcn is provided then hess fcn is also required. Specifically, if there are nonlinear constraints, the Hessian

information must provided by the hess fcn function and it need not be computed in f fcn.

gh fcn is provided and the Hessian is computed by hess fcn, d2f as an n×n matrix
equal to the Hessian ∂2f

∂x2
. Similarly, the constraint evaluation function gh fcn must

return the m × 1 vector of nonlinear equality constraint violations g(x), the p × 1
vector of nonlinear inequality constraint violations h(x) along with their gradients
in dg and dh. Here dg is an n×m matrix whose jth column is ∇gj and dh is n× p,
with jth column equal to ∇hj. Finally, for cases with nonlinear constraints, hess fcn

returns the n× n Hessian ∂2L
∂x2

of the Lagrangian function

L(x, λ, µ, σ) = σf(x) + λTg(x) + µTh(x) (3.6)

for given values of the multipliers λ and µ, where σ is the cost mult scale factor for
the objective function. Unlike fmincon, mips passes this scale factor to the Hessian
evaluation function in the 3rd argument.

The use of nargout in f fcn and gh fcn is recommended so that the gradients
and Hessian are only computed when required.

10

Table 3-2: Output Arguments for mips

name description

x solution vector
f final objective function value
exitflag exit flag

1 – first order optimality conditions satisfied
0 – maximum number of iterations reached

-1 – numerically failed
output output struct with fields

iterations number of iterations performed
hist struct array with trajectories of the following: feascond,

gradcond, compcond, costcond, gamma, stepsize, obj, alphap,
alphad

message exit message
lambda struct containing the Langrange and Kuhn-Tucker multipliers on the con-

straints, with fields:
eqnonlin nonlinear equality constraints
ineqnonlin nonlinear inequality constraints
mu l lower (left-hand) limit on linear constraints
mu u upper (right-hand) limit on linear constraints
lower lower bound on optimization variables
upper upper bound on optimization variables

3.1 Example 1

The following code, included as mips example1.m in <MIPS>lib/t, shows a simple
example of using mips to solve a 2-dimensional unconstrained optimization of Rosen-
brock’s “banana” function10

f(x) = 100(x2 − x2
1)2 + (1− x1)2. (3.7)

First, create a Matlab function that will evaluate the objective function, its
gradients and Hessian, for a given value of x. In this case, the coefficient of the first
term is defined as a paramter a.

10http://en.wikipedia.org/wiki/Rosenbrock_function

11

http://en.wikipedia.org/wiki/Rosenbrock_function

Table 3-3: Options for mips†

name default description

opt.verbose 0 controls level of progress output displayed
0 – print no progress info
1 – print a little progress info
2 – print a lot of progress info
3 – print all progress info

opt.feastol 10−6 termination tolerance for feasibility condition
opt.gradtol 10−6 termination tolerance for gradient condition
opt.comptol 10−6 termination tolerance for complementarity condition
opt.costtol 10−6 termination tolerance for cost condition
opt.max it 150 maximum number of iterations
opt.step control 0 set to 1 to enable step-size control
opt.sc.red it 20 max number of step-size reductions if step-control is on
opt.cost mult 1 cost multiplier used to scale the objective function for improved

conditioning. Note: This value is also passed as the 3rd argu-
ment to the Hessian evaluation function so that it can appro-
priately scale the objective function term in the Hessian of the
Lagrangian.

opt.xi 0.99995 ξ constant used in α updates in (3.46) and (3.47)
opt.sigma 0.1 centering parameter σ used in γ update in (3.52)
opt.z0 1 used to initialize elements of slack variable Z
opt.alpha min 10−8 algorithm returns “Numerically Failed” if the αp or αd from

(3.46) and (3.47) become smaller than this value
opt.rho min 0.95 lower bound on ρt corresponding to 1− η in Fig. 5 in [2]
opt.rho max 1.05 upper bound on ρt corresponding to 1 + η in Fig. 5 in [2]
opt.mu threshold 10−5 Kuhn-Tucker multipliers smaller than this value for non-binding

constraints are forced to zero
opt.max stepsize 1010 algorithm returns “Numerically Failed” if the 2-norm of the New-

ton step

[
∆X
∆λ

]
from (3.45) exceeds this value

function [f, df, d2f] = banana(x, a)

f = a*(x(2)-x(1)^2)^2+(1-x(1))^2;

if nargout > 1 %% gradient is required

df = [4*a*(x(1)^3 - x(1)*x(2)) + 2*x(1)-2;

2*a*(x(2) - x(1)^2)];

if nargout > 2 %% Hessian is required

d2f = 4*a*[3*x(1)^2 - x(2) + 1/(2*a), -x(1);

-x(1) 1/2];

end

end

12

Then, create a handle to the function, defining the value of the paramter a to be
100, set up the starting value of x, and call the mips function to solve it.

>> f_fcn = @(x)banana(x, 100);

>> x0 = [-1.9; 2];

>> [x, f] = mips(f_fcn, x0)

x =

1

1

f =

0

3.2 Example 2

The second example11 solves the following 3-dimensional constrained optimization,
printing the details of the solver’s progress:

min
x
f(x) = −x1x2 − x2x3 (3.8)

subject to

x2
1 − x2

2 + x2
3 − 2 ≤ 0 (3.9)

x2
1 + x2

2 + x2
3 − 10 ≤ 0. (3.10)

First, create a Matlab function to evaluate the objective function and its gra-
dients,12

11From http://en.wikipedia.org/wiki/Nonlinear_programming#3-dimensional_example.
12Since the problem has nonlinear constraints and the Hessian is provided by hess fcn, this

function will never be called with three output arguments, so the code to compute d2f is actually
not necessary.

13

http://en.wikipedia.org/wiki/Nonlinear_programming#3-dimensional_example

function [f, df, d2f] = f2(x)

f = -x(1)*x(2) - x(2)*x(3);

if nargout > 1 %% gradient is required

df = -[x(2); x(1)+x(3); x(2)];

if nargout > 2 %% Hessian is required

d2f = -[0 1 0; 1 0 1; 0 1 0]; %% actually not used since

end %% 'hess_fcn' is provided

end

one to evaluate the constraints, in this case inequalities only, and their gradients,

function [h, g, dh, dg] = gh2(x)

h = [1 -1 1; 1 1 1] * x.^2 + [-2; -10];

dh = 2 * [x(1) x(1); -x(2) x(2); x(3) x(3)];

g = []; dg = [];

and another to evaluate the Hessian of the Lagrangian.

function Lxx = hess2(x, lam, cost_mult)

if nargin < 3, cost_mult = 1; end %% allows to be used with 'fmincon'

mu = lam.ineqnonlin;

Lxx = cost_mult * [0 -1 0; -1 0 -1; 0 -1 0] + ...

[2*[1 1]*mu 0 0; 0 2*[-1 1]*mu 0; 0 0 2*[1 1]*mu];

Then create a problem struct with handles to these functions, a starting value for x
and an option to print the solver’s progress. Finally, pass this struct to mips to solve
the problem and print some of the return values to get the output below.

function mips_example2

problem = struct(...

'f_fcn', @(x)f2(x), ...

'gh_fcn', @(x)gh2(x), ...

'hess_fcn', @(x, lam, cost_mult)hess2(x, lam, cost_mult), ...

'x0', [1; 1; 0], ...

'opt', struct('verbose', 2) ...

);

[x, f, exitflag, output, lambda] = mips(problem);

fprintf('\nf = %g exitflag = %d\n', f, exitflag);

fprintf('\nx = \n');

fprintf(' %g\n', x);

fprintf('\nlambda.ineqnonlin =\n');

fprintf(' %g\n', lambda.ineqnonlin);

14

>> mips_example2

MATPOWER Interior Point Solver -- MIPS, Version 1.3, 30-Oct-2018

(using built-in linear solver)

it objective step size feascond gradcond compcond costcond

---- ------------ --------- ------------ ------------ ------------ ------------

0 -1 0 1.5 5 0

1 -5.3250167 1.6875 0 0.894235 0.850653 2.16251

2 -7.4708991 0.97413 0.129183 0.00936418 0.117278 0.339269

3 -7.0553031 0.10406 0 0.00174933 0.0196518 0.0490616

4 -7.0686267 0.034574 0 0.00041301 0.0030084 0.00165402

5 -7.0706104 0.0065191 0 1.53531e-05 0.000337971 0.000245844

6 -7.0710134 0.00062152 0 1.22094e-07 3.41308e-05 4.99387e-05

7 -7.0710623 5.7217e-05 0 9.84879e-10 3.41587e-06 6.05875e-06

8 -7.0710673 5.6761e-06 0 9.73527e-12 3.41615e-07 6.15483e-07

Converged!

f = -7.07107 exitflag = 1

x =

1.58114

2.23607

1.58114

lambda.ineqnonlin =

0

0.707107

This example can be found in mips example2.m. More example problems for mips

can be found in t mips.m, both in <MIPS>lib/t.

3.3 Quadratic Programming Solver

A convenience wrapper function called qps mips is provided to make it trivial to set
up and solve linear programming (LP) and quadratic programming (QP) problems
of the following form:

min
x

1

2
xTHx+ cTx (3.11)

subject to

l ≤ Ax ≤ u (3.12)

xmin ≤ x ≤ xmax. (3.13)

15

Instead of a function handle, the objective function is specified in terms of the
paramters H and c of quadratic cost coefficients. Internally, qps mips passes mips

the handle of a function that uses these paramters to evaluate the objective function,
gradients and Hessian.

The calling syntax for qps mips is similar to that used by quadprog from the
Matlab Optimization Toolbox.

[x, f, exitflag, output, lambda] = qps_mips(H, c, A, l, u, xmin, xmax, x0, opt);

Alternatively, the input arguments can be packaged as fields in a problem struct and
passed in as a single argument, where all fields except H, c, A and l are optional.

[x, f, exitflag, output, lambda] = qps_mips(problem);

Aside from H and c, all input and output arguments correspond exactly to the same
arguments for mips as described in Tables 3-1 and 3-2.

As with mips and fmincon, the primary difference between the calling syntax
for qps mips and quadprog is that the linear constraints are specified in terms of a
single doubly-bounded linear function (l ≤ Ax ≤ u) as opposed to separate equality
constrained (Aeqx = beq) and upper bounded (Ax ≤ b) functions.

MIPS also includes another wrapper function qps matpower that provides a con-
sistent interface for all of the QP and LP solvers it has available. This interface is
identical to that used by qps mips with the exception of the structure of the opt

input argument. The solver is chosen according to the value of opt.alg. See the help
for qps matpower for details.

Several examples of using qps matpower to solve LP and QP problems can be
found in t qps matpower.m.

3.4 Primal-Dual Interior Point Algorithm

This section provides some details on the primal-dual interior point algorithm used
by MIPS and described in [2, 3].

3.4.1 Notation

For a scalar function f : Rn → R of a real vector X =
[
x1 x2 · · · xn

]T
, we use

the following notation for the first derivatives (transpose of the gradient):

fX =
∂f

∂X
=
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
. (3.14)

16

The matrix of second partial derivatives, the Hessian of f , is:

fXX =
∂2f

∂X2
=

∂

∂X

(
∂f

∂X

)T

=

∂2f
∂x21

· · · ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
· · · ∂2f

∂x2n

 . (3.15)

For a vector function F : Rn → Rm of a vector X, where

F (X) =
[
f1(X) f2(X) · · · fm(X)

]T
(3.16)

the first derivatives form the Jacobian matrix, where row i is the transpose of the
gradient of fi

FX =
∂F

∂X
=

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 . (3.17)

In these derivations, the full 3-dimensional set of second partial derivatives of F will
not be computed. Instead a matrix of partial derivatives will be formed by computing
the Jacobian of the vector function obtained by multiplying the transpose of the
Jacobian of F by a vector λ, using the following notation

FXX(λ) =
∂

∂X

(
FX

Tλ
)
. (3.18)

Please note also that [A] is used to denote a diagonal matrix with vector A on
the diagonal and e is a vector of all ones.

3.4.2 Problem Formulation and Lagrangian

The primal-dual interior point method used by MIPS solves a problem of the form:

min
X

f(X) (3.19)

subject to

G(X) = 0 (3.20)

H(X) ≤ 0 (3.21)

where the linear constraints and variable bounds from (3.4) and (3.5) have been
incorporated into G(X) and H(X). The approach taken involves converting the ni

17

inequality constraints into equality constraints using a barrier function and vector of
positive slack variables Z.

min
X

[
f(X)− γ

ni∑
m=1

ln(Zm)

]
(3.22)

subject to

G(X) = 0 (3.23)

H(X) + Z = 0 (3.24)

Z > 0 (3.25)

As the parameter of perturbation γ approaches zero, the solution to this problem
approaches that of the original problem.

For a given value of γ, the Lagrangian for this equality constrained problem is

Lγ(X,Z, λ, µ) = f(X) + λTG(X) + µT(H(X) + Z)− γ
ni∑
m=1

ln(Zm). (3.26)

Taking the partial derivatives with respect to each of the variables yields:

LγX(X,Z, λ, µ) = fX + λTGX + µTHX (3.27)

LγZ(X,Z, λ, µ) = µT − γeT [Z]−1 (3.28)

Lγλ(X,Z, λ, µ) = GT(X) (3.29)

Lγµ(X,Z, λ, µ) = HT(X) + ZT. (3.30)

And the Hessian of the Lagrangian with respect to X is given by

LγXX(X,Z, λ, µ) = fXX +GXX(λ) +HXX(µ). (3.31)

3.4.3 First Order Optimality Conditions

The first order optimality (Karush-Kuhn-Tucker) conditions for this problem are
satisfied when the partial derivatives of the Lagrangian above are all set to zero:

F (X,Z, λ, µ) = 0 (3.32)

Z > 0 (3.33)

µ > 0 (3.34)

18

where

F (X,Z, λ, µ) =

LγX

T

[µ]Z − γe
G(X)

H(X) + Z

 =

fX

T +GX
Tλ+HX

Tµ
[µ]Z − γe
G(X)

H(X) + Z

 . (3.35)

3.4.4 Newton Step

The first order optimality conditions are solved using Newton’s method. The Newton
update step can be written as follows:

[
FX FZ Fλ Fµ

]
∆X
∆Z
∆λ
∆µ

 = −F (X,Z, λ, µ) (3.36)

LγXX 0 GX

T HX
T

0 [µ] 0 [Z]
GX 0 0 0
HX I 0 0

∆X
∆Z
∆λ
∆µ

 = −

LγX

T

[µ]Z − γe
G(X)

H(X) + Z

 . (3.37)

This set of equations can be simplified and reduced to a smaller set of equations
by solving explicitly for ∆µ in terms of ∆Z and for ∆Z in terms of ∆X. Taking the
2nd row of (3.37) and solving for ∆µ we get

[µ] ∆Z + [Z] ∆µ = − [µ]Z + γe

[Z] ∆µ = − [Z]µ+ γe− [µ] ∆Z

∆µ = −µ+ [Z]−1 (γe− [µ] ∆Z). (3.38)

Solving the 4th row of (3.37) for ∆Z yields

HX∆X + ∆Z = −H(X)− Z
∆Z = −H(X)− Z −HX∆X. (3.39)

19

Then, substituting (3.38) and (3.39) into the 1st row of (3.37) results in

LγXX∆X +GX
T∆λ+HX

T∆µ = −LγX
T

LγXX∆X +GX
T∆λ+HX

T(−µ+ [Z]−1 (γe− [µ] ∆Z)) = −LγX
T

LγXX∆X +GX
T∆λ

+HX
T(−µ+ [Z]−1 (γe− [µ] (−H(X)− Z −HX∆X))) = −LγX

T

LγXX∆X +GX
T∆λ−HX

Tµ+HX
T [Z]−1 γe

+HX
T [Z]−1 [µ]H(X) +HX

T [Z]−1 [Z]µ+HX
T [Z]−1 [µ]HX∆X = −LγX

T

(LγXX +HX
T [Z]−1 [µ]HX)∆X +GX

T∆λ

+HX
T [Z]−1 (γe+ [µ]H(X)) = −LγX

T

M∆X +GX
T∆λ = −N (3.40)

where

M ≡ LγXX +HX
T [Z]−1 [µ]HX (3.41)

= fXX +GXX(λ) +HXX(µ) +HX
T [Z]−1 [µ]HX (3.42)

and

N ≡ LγX
T +HX

T [Z]−1 (γe+ [µ]H(X)) (3.43)

= fX
T +GX

Tλ+HX
Tµ+HX

T [Z]−1 (γe+ [µ]H(X)). (3.44)

Combining (3.40) and the 3rd row of (3.37) results in a system of equations of
reduced size: [

M GX
T

GX 0

] [
∆X
∆λ

]
=

[
−N
−G(X)

]
. (3.45)

The Newton update can then be computed in the following 3 steps:

1. Compute ∆X and ∆λ from (3.45).

2. Compute ∆Z from (3.39).

3. Compute ∆µ from (3.38).

In order to maintain strict feasibility of the trial solution, the algorithm truncates
the Newton step by scaling the primal and dual variables by αp and αd, respectively,

20

where these scale factors are computed as follows:

αp = min

(
ξ min

∆Zm<0

(
− Zm

∆Zm

)
, 1

)
(3.46)

αd = min

(
ξ min

∆µm<0

(
− µm

∆µm

)
, 1

)
(3.47)

resulting in the variable updates below.

X ← X + αp∆X (3.48)

Z ← Z + αp∆Z (3.49)

λ← λ+ αd∆λ (3.50)

µ← µ+ αd∆µ (3.51)

The parameter ξ is a constant scalar with a value slightly less than one. In MIPS,
ξ is set to 0.99995.

In this method, during the Newton-like iterations, the perturbation parameter γ
must converge to zero in order to satisfy the first order optimality conditions of the
original problem. MIPS uses the following rule to update γ at each iteration, after
updating Z and µ:

γ ← σ
ZTµ

ni
(3.52)

where σ is a scalar constant between 0 and 1. In MIPS, σ is set to 0.1.

21

Appendix A MIPS Files and Functions

This appendix lists all of the files and functions that MIPS provides. In most cases,
the function is found in a Matlab M-file in the lib directory of the distribution,
where the .m extension is omitted from this listing. For more information on each,
at the Matlab prompt, simply type help followed by the name of the function. For
documentation and other files, the filename extensions are included.

Table A-1: MIPS Files and Functions

name description

AUTHORS list of authors and contributors
CHANGES MIPS change history
CONTRIBUTING.md notes on how to contribute to the MIPS project
LICENSE MIPS license (3-clause BSD license)
README.md basic introduction to MIPS
docs/

MIPS-manual.pdf MIPS User’s Manual
MIPS-manual.tex LaTeX source for MIPS User’s Manual

lib/

mips Matpower Interior Point Solver – primal/dual interior point
solver for NLP

mipsver prints version information for MIPS
mplinsolve common linear system solver interface, used by MIPS
qps mips common QP/LP solver interface to MIPS-based solver
t/

mips example1 implements example 1 from MIPS User’s Manual
mips example2 implements example 2 from MIPS User’s Manual
test mips runs full MIPS test suite
t mips runs tests for MIPS NLP solver
t mips pardiso runs tests for MIPS NLP solver, using PARDISO as linear solver
t mplinsolve tests for mplinsolve
t qps mips runs tests for qps mips

22

http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.3.pdf

Appendix B PARDISO – Parallel Sparse Direct

and Multi-Recursive Iterative Linear

Solvers

The PARDISO package is a thread-safe, high-performance, robust, memory efficient
and easy to use software for solving large sparse symmetric and non-symmetric linear
systems of equations on shared-memory and distributed-memory multiprocessor sys-
tems [9, 10]. More information is available at http://www.pardiso-project.org.

When the Matlab interface to PARDISO is installed, PARDISO’s solvers can be
used to replace the built-in \ operator for solving for the Newton update step in MIPS
by setting the linsolver option equal to 'PARDISO'. The mplinsolve function can
also be called directly to solve Ax = b problems via PARDISO or the built-in solver,
depending on the arguments supplied. This interface also gives access to the full
range of PARDISO’s options. For details, see help mplinsolve and the PARDISO
User’s Manual at http://www.pardiso-project.org/manual/manual.pdf.

23

http://www.pardiso-project.org
http://www.pardiso-project.org/manual/manual.pdf

Appendix C Release History

The full release history can be found in CHANGES.md or online at https://github.

com/MATPOWER/mips/blob/master/CHANGES.md.

C.1 Version 1.0 – released Feb 7, 2011

Documentation found in Appendix A of the Matpower 4.0 User’s Manual, available
online.13

Changes

• Licensed under the GNU General Public License (GPL).

• Added compatibility with GNU Octave, a free, open-source Matlab clone.

• MIPS (Matpower Interior Point Solver), a new a pure-Matlab implemen-
tation of the primal-dual interior point methods from the optional package
TSPOPF.

C.2 Version 1.0.1 – released Apr 30, 2012

Documentation found in Appendix A of the Matpower 4.0 User’s Manual, available
online.14

Bug Fixed

• Fixed fatal bug in MIPS for unconstrained, scalar problems. Thanks to Han
Na Gwon.

C.3 Version 1.0.2 – released Nov 5, 2013

Documentation found in Appendix A of the Matpower 4.0 User’s Manual, available
online.15

13http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf
14http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf
15http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf

24

https://github.com/MATPOWER/mips/blob/master/CHANGES.md
https://github.com/MATPOWER/mips/blob/master/CHANGES.md
https://github.com/MATPOWER/mips/blob/master/CHANGES.md
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-4.0.pdf

Bug Fixed

• Fixed a bug in MIPS where a near-singular matrix could produce an extremely
large Newton step, resulting in incorrectly satisfying the relative feasibility
criterion for successful termination.

C.4 Version 1.1 – released Dec 17, 2014

Documentation found in Appendix A of the Matpower 5.0 User’s Manual, available
online.16

New Features

• Many new user-settable options.

Incompatible Changes

• The name of the mips() option used to specify the maximum number of step-
size reductions with step control on was changed from max red to sc.red it

for consistency with other Matpower options.

C.5 Version 1.2 – released Mar 20, 2015

Documentation found in Appendix A of the Matpower 5.1 User’s Manual, available
online.17

New License

• Switched to the more permissive 3-clause BSD license from the previously used
GNU General Public License (GPL) v3.0.

New Documentation

• Added an online function reference to the Matpower website at http://www.
pserc.cornell.edu/matpower/docs/ref/.

16http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-5.0.pdf
17http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-5.1.pdf

25

http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-5.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-5.1.pdf
http://www.pserc.cornell.edu/matpower/
http://www.pserc.cornell.edu/matpower/docs/ref/
http://www.pserc.cornell.edu/matpower/docs/ref/
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-5.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-5.1.pdf

New Features

• Added support for using PARDISO (http://www.pardiso-project.org/) as
linear solver for computing interior-point update steps in MIPS, resulting in
dramatic improvements in computation time and memory use for very large-
scale problems.

• New functions:

– mplinsolve() provides unified interface for linear system solvers, including
PARDISO and built-in backslash operator

C.6 Version 1.2.1 – released Jun 1, 2016

Documentation found in Appendix A of the Matpower 6.0b1 User’s Manual, avail-
able online.18

Bug Fixed

• Fixed issue where default value of 'feastol' option was not being set correctly
in mips() when called directly (or via qps mips()) with 'feastol' = 0.

C.7 Version 1.2.2 – released Dec 16, 2016

Documentation found in the MIPS 1.2.2 User’s Manual19 or in Appendix A of the
Matpower 6.0 User’s Manual, available online.20

New Open Development Model

• MIPS development has moved to GitHub! The code repository is now publicly
available to clone and submit pull requests.21

• Public issue tracker for reporting bugs, submitting patches, etc.22

18http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-6.0b1.pdf
19http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.2.2.pdf
20http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-6.0.pdf
21https://github.com/MATPOWER/mips
22https://github.com/MATPOWER/mips/issues

26

http://www.pardiso-project.org/
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-6.0b1.pdf
http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.2.2.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-6.0.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-6.0b1.pdf
http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.2.2.pdf
http://www.pserc.cornell.edu/matpower/docs/MATPOWER-manual-6.0.pdf
https://github.com/MATPOWER/mips
https://github.com/MATPOWER/mips/issues

Other Changes

• Renamed from Matlab Interior Point Solver to Matpower Interior Point
Solver.

• Remove dependence of t mpsolve() on presence of have fcn() (from Mat-
power) to detect PARDISO installation.

C.8 Version 1.3 – released Oct 30, 2018

The MIPS 1.3 User’s Manual is available online.23

New Features

• Support for PARDISO 6.x.

• New mplinsolve solver option 'LU' for explicit LU decomposition with back
substitution, with options in opt.lu for specifying the number of output ar-
guments in call to lu (opt.lu.nout), whether to use permutation vectors or
matrices (opt.lu.vec) and pivot threshold options (opt.lu.thresh). The fol-
lowing values for the solver argument act as shortcuts for specifying various
combinations of options: 'LU3', 'LU3a', 'LU4', 'LU5', 'LU3m', 'LU3am', 'LU4m',
'LU5m'. See help mplinsolve for details. Thanks to Jose Luis Maŕın.

Bugs Fixed

• Fix bug preventing pardiso.dparm options from being set.

Other Changes

• LATEX source code for MIPS User’s Manual included in docs/src.

• Move mplinsolve PARDISO options to opt.pardiso in preparation for adding
options for other solvers.

23http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.3.pdf

27

http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.3.pdf
http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.3.pdf
http://www.pserc.cornell.edu/matpower/docs/MIPS-manual-1.3.pdf

References

[1] TSPOPF. [Online]. Available: http://www.pserc.cornell.edu/tspopf/. 1.1,
3

[2] H. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas,
“On Computational Issues of Market-Based Optimal Power Flow,” Power Sys-
tems, IEEE Transactions on, vol. 22, no. 3, pp. 1185–1193, August 2007.
DOI: 10.1109/TPWRS.2010.2051168 1.1, 3, 3-3, 3.4

[3] H. Wang, On the Computation and Application of Multi-period Security-
constrained Optimal Power Flow for Real-time Electricity Market Operations,
Ph.D. thesis, Electrical and Computer Engineering, Cornell University, May
2007. 1.1, 1.3, 3, 3.4

[4] R. D. Zimmerman and C. Murillo-Sánchez. Matpower User’s Manual, [On-
line]. Available: http://www.pserc.cornell.edu/matpower/ 1.1

[5] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower:
Steady-State Operations, Planning and Analysis Tools for Power Systems Re-
search and Education,” Power Systems, IEEE Transactions on, vol. 26, no. 1,
pp. 12–19, Feb. 2011. DOI: 10.1109/TPWRS.2010.2051168 1.1

[6] John W. Eaton, David Bateman, Søren Hauberg, Rik Wehbring (2015). GNU
Octave version 4.0.0 manual: a high-level interactive language for numer-
ical computations. Available: http://www.gnu.org/software/octave/doc/

interpreter/. 1, 5

[7] The BSD 3-Clause License. [Online]. Available: http://opensource.org/

licenses/BSD-3-Clause. 1.2

[8] GNU General Public License. [Online]. Available: http://www.gnu.org/

licenses/. 3

[9] O. Shenk and K. Gärtner, “Solving unsymmetric sparse systems of linear
equations with PARDISO,” Journal of Future Generation Computer Systems,
20(3):475–487, 2004. B

[10] A. Kuzmin, M. Luisier and O. Shenk, “Fast methods for computing selected
elements of the Greens function in massively parallel nanoelectronic device sim-
ulations,” in F. Wolf, B. Mohr and D. Mey, editors, Euro-Par 2013 Parallel Pro-

28

http://www.pserc.cornell.edu/tspopf/
https://doi.org/10.1109/TPWRS.2010.2051168
http://www.pserc.cornell.edu/matpower/
https://doi.org/10.1109/TPWRS.2010.2051168
http://www.gnu.org/software/octave/doc/interpreter/
http://www.gnu.org/software/octave/doc/interpreter/
http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

cessing, Vol. 8097, Lecture Notes in Computer Science, pp. 533–544, Springer
Berlin Heidelberg, 2013. B

29

	Introduction
	Background
	License and Terms of Use
	Citing MIPS
	MIPS Development

	Getting Started
	System Requirements
	Installation
	Documentation

	MIPS – Matpower Interior Point Solver
	Example 1
	Example 2
	Quadratic Programming Solver
	Primal-Dual Interior Point Algorithm
	Notation
	Problem Formulation and Lagrangian
	First Order Optimality Conditions
	Newton Step

	Appendix MIPS Files and Functions
	Appendix PARDISO – Parallel Sparse Direct and Multi-Recursive Iterative Linear Solvers
	Appendix Release History
	Version 1.0 – released Feb 7, 2011
	Version 1.0.1 – released Apr 30, 2012
	Version 1.0.2 – released Nov 5, 2013
	Version 1.1 – released Dec 17, 2014
	Version 1.2 – released Mar 20, 2015
	Version 1.2.1 – released Jun 1, 2016
	Version 1.2.2 – released Dec 16, 2016
	Version 1.3 – released Oct 30, 2018

	References

