
1

MATPOWER: Steady-State Operations,
Planning and Analysis Tools for

Power Systems Research and Education
Ray D. Zimmerman, Member, IEEE, Carlos E. Murillo-Sánchez, Member, IEEE,

and Robert J. Thomas, Life Fellow, IEEE

Abstract—MATPOWER is an open-source Matlab-based power
system simulation package that provides a high-level set of power
flow, optimal power flow (OPF), and other tools targeted toward
researchers, educators, and students. The OPF architecture is
designed to be extensible, making it easy to add user-defined
variables, costs, and constraints to the standard OPF prob-
lem. This paper presents the details of the network modeling
and problem formulations used by MATPOWER, including its
extensible OPF architecture. This structure is used internally
to implement several extensions to the standard OPF problem,
including piece-wise linear cost functions, dispatchable loads,
generator capability curves, and branch angle difference limits.
Simulation results are presented for a number of test cases
comparing the performance of several available OPF solvers and
demonstrating MATPOWER’s ability to solve large-scale AC and
DC OPF problems.

Index Terms—Load flow analysis, optimal power flow, opti-
mization methods, power engineering, power engineering educa-
tion, power system economics, power system simulation, power
systems, simulation software, software tools

I. INTRODUCTION

THIS paper describes MATPOWER, an open-source Matlab
power system simulation package [1]. It is used widely

in research and education for AC and DC power flow and
optimal power flow (OPF) simulations. It also includes tools
for running OPF-based auction markets and co-optimizing
reserves and energy. Included in the distribution are numerous
example power flow and OPF cases, ranging from a trivial
four-bus example to real-world cases with a few thousand
buses.

MATPOWER consists of a set of Matlab M-files designed
to give the best performance possible while keeping the code
simple to understand and customize. Matlab has become a
popular tool for scientific computing, combining a high-level
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language ideal for matrix and vector computations, a cross-
platform runtime with robust math libraries, an integrated de-
velopment environment and GUI with excellent visualization
capabilities, and an active community of users and developers.
As a high-level scientific computing language, it is well suited
for the numerical computation typical of steady-state power
system simulations.

The initial motivation for the development of the Matlab-
based power flow and OPF code that would eventually become
MATPOWER arose from the computational requirements of
the PowerWeb platform [3], [4]. As a web-based market
simulation platform used to test electricity markets, PowerWeb
requires a “smart market” auction clearing software that uses
an OPF to compute the allocations and pricing. Having the
clear potential to be useful to other researchers and educators,
the software was released in 1997 via the Internet as an open-
source power system simulation package, now distributed
under the GNU GPL [2]. Even beyond its initial release, much
of the ongoing development of MATPOWER continued to be
driven in large part by the needs of the PowerWeb project.
This at least partially explains the lack of a graphical user
interface used by some related tools such as PSAT [5].

While it is often employed as an end-user tool for simply
running one-shot simulations defined via an input case file, the
package can also be quite valuable as a library of functions
for use in custom code developed for one’s own research. At
this lower level, MATPOWER provides easy-to-use functions
for forming standard network Ybus and B matrices, calculating
power transfer and line outage distribution factors (PTDFs and
LODFs), and efficiently computing first and second derivatives
of the power flow equations, among other things. At a higher
level, the structure of the OPF implementation is explicitly
designed to be extensible [6], allowing for the addition of
user-defined variables, costs, and linear constraints.

The default OPF solver is a high-performance primal-dual
interior point solver implemented in pure-Matlab. This solver
has application to general nonlinear optimization problems
outside of MATPOWER and comes with a convenience wrapper
function to make it trivial to set up and solve linear program-
ming (LP) and quadratic programming (QP) problems.

To help ensure the quality of the code, MATPOWER includes
an extensive suite of automated tests. Some may find the
testing framework useful for creating automated tests for their
own Matlab programs.

A number of Matlab-based software packages related to
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Fig. 1. Branch Model

power system simulation have been developed by others. A
nice summary of their features is presented in [5]. The primary
distinguishing characteristics of MATPOWER, aside from being
one of the first to be publicly and freely available as open-
source, are the extensible architecture of the OPF formulation
and its ease of use as a toolbox of functions to incorporate
into one’s own programs. It is also compatible with Octave.

This paper describes the MATPOWER package as it stands
at version 4, detailing the component modeling in Section II,
the power flow and optimal power flow formulations in
Sections III and IV, and some additional functionality in Sec-
tion V. Some example results and conclusions are presented
in Section VI.

II. MODELING

MATPOWER employs all of the standard steady-state models
typically used for power flow analysis. The AC models are
described first, then the simplified DC models. Internally, the
magnitudes of all values are expressed in per unit and angles
of complex quantities are expressed in radians. Due to the
strengths of the Matlab programming language in handling
matrices and vectors, the models and equations are presented
here in matrix and vector form.

A. Data Formats

The data files used by MATPOWER are Matlab M-files or
MAT-files which define and return a single Matlab struct. The
M-file format is plain text that can be edited using any standard
text editor. The fields of the struct are baseMVA, bus, branch,
gen, and optionally gencost, where baseMVA is a scalar and
the rest are matrices. In the matrices, each row corresponds to
a single bus, branch, or generator. The columns are similar to
the columns in the standard IEEE CDF and PTI formats. The
number of rows in bus, branch, and gen are nb, nl and ng ,
respectively.

B. Branches

All transmission lines, transformers and phase shifters are
modeled with a common branch model, consisting of a
standard π transmission line model, with series impedance
zs = rs+jxs and total charging capacitance bc, in series with
an ideal phase shifting transformer. The transformer, whose tap

ratio has magnitude τ and phase shift angle θshift, is located
at the from end of the branch, as shown in Fig. 1.

The complex current injections if and it at the from and
to ends of the branch, respectively, can be expressed in terms
of the 2× 2 branch admittance matrix Ybr and the respective
terminal voltages vf and vt[

if

it

]
= Ybr

[
vf

vt

]
. (1)

With the series admittance element in the π model denoted by
ys = 1/zs, the branch admittance matrix can be written

Ybr =

[ (
ys + j bc2

)
1
τ2 −ys 1

τe−jθshift

−ys 1
τejθshift

ys + j bc2

]
. (2)

If the four elements of this matrix for branch i are labeled
as follows:

Y ibr =

[
yiff yift
yitf yitt

]
(3)

then four nl × 1 vectors Yff , Yft, Ytf and Ytt can be
constructed, where the ith element of each comes from the
corresponding element of Y ibr. Furthermore, the nl×nb sparse
connection matrices Cf and Ct used in building the system
admittance matrices can be defined as follows. The (i, j)th
element of Cf and the (i, k)th element of Ct are equal to
1 for each branch i, where branch i connects from bus j to
bus k. All other elements of Cf and Ct are zero.

C. Generators

A generator is modeled as a complex power injection at a
specific bus. For generator i, the injection is

sig = pig + jqig. (4)

Let Sg = Pg + jQg be the ng × 1 vector of these generator
injections. A sparse nb × ng generator connection matrix Cg
can be defined such that its (i, j)th element is 1 if generator j
is located at bus i and 0 otherwise. The nb × 1 vector of all
bus injections from generators can then be expressed as

Sg,bus = Cg · Sg. (5)

D. Loads

Constant power loads are modeled as a specified quantity
of real and reactive power consumed at a bus. For bus i, the
load is

sid = pid + jqid (6)

and Sd = Pd + jQd denotes the nb × 1 vector of complex
loads at all buses. Constant impedance and constant current
loads are not implemented directly, but the constant impedance
portions can be modeled as a shunt element described below.
Dispatchable loads are modeled as negative generators and
appear as negative values in Sg .
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E. Shunt Elements

A shunt connected element such as a capacitor or inductor
is modeled as a fixed impedance to ground at a bus. The
admittance of the shunt element at bus i is given as

yish = gish + jbish (7)

and Ysh = Gsh + jBsh denotes the nb × 1 vector of shunt
admittances at all buses.

F. Network Equations

For a network with nb buses, all constant impedance ele-
ments of the model are incorporated into a complex nb×nb bus
admittance matrix Ybus that relates the complex nodal current
injections Ibus to the complex node voltages V :

Ibus = YbusV. (8)

Similarly, for a network with nl branches, the nl×nb system
branch admittance matrices Yf and Yt relate the bus voltages
to the nl × 1 vectors If and It of branch currents at the from
and to ends of all branches, respectively:

If = YfV (9)
It = YtV. (10)

If [ · ] is used to denote an operator that takes an n× 1 vector
and creates the corresponding n × n diagonal matrix with
the vector elements on the diagonal, these system admittance
matrices can be formed as follows:

Yf = [Yff ]Cf + [Yft]Ct (11)
Yt = [Ytf ]Cf + [Ytt]Ct (12)

Ybus = Cf
TYf + Ct

TYt + [Ysh] . (13)

The current injections of (8)–(10) can be used to compute
the corresponding complex power injections as functions of
the complex bus voltages V :

Sbus(V ) = [V ] I∗bus = [V ]Y ∗busV
∗ (14)

Sf (V ) = [CfV ] I∗f = [CfV ]Y ∗f V
∗ (15)

St(V ) = [CtV ] I∗t = [CtV ]Y ∗t V
∗. (16)

The nodal bus injections are then matched to the injections
from loads and generators to form the AC nodal power balance
equations, expressed as a function of the complex bus voltages
and generator injections in complex matrix form as

gS(V, Sg) = Sbus(V ) + Sd − CgSg = 0. (17)

G. DC Modeling

The DC formulation [11] (with more detailed derivations
in [1]) is based on the same parameters, but with the following
three additional simplifying assumptions.
• Branches can be considered lossless. In particular, branch

resistances rs and charging capacitances bc are negligible:

ys =
1

rs + jxs
≈ 1

jxs
, bc ≈ 0. (18)

• All bus voltage magnitudes are close to 1 p.u.

vi ≈ ejθi . (19)

• Voltage angle differences across branches are small
enough that

sin(θf − θt − θshift) ≈ θf − θt − θshift. (20)

By combining (1) and (2) with (18) and (19), the complex
current flow in a branch can be approximated as

if ≈
1

jxsτ
(
1

τ
ejθf − ej(θt+θshift)). (21)

Furthermore, using (19) and this approximate current to com-
pute the complex power flow, then extracting the real part and
applying the last of the DC modeling assumptions from (20)
yields

pf ≈
1

xsτ
(θf − θt − θshift). (22)

As expected, given the lossless assumption, a similar deriva-
tion for pt leads to pt = −pf .

The relationship between the real power flows and voltage
angles for an individual branch i can then be summarized as[

pf

pt

]
= Bibr

[
θf

θt

]
+ P ishift (23)

where Bibr =

[
bi −bi
−bi bi

]
, P ishift = θishift

[
−bi
bi

]
, and bi

is defined in terms of the series reactance and tap ratio for
that branch as bi = 1/xisτ

i.
With a DC model, the linear network equations relate

real power to bus voltage angles, versus complex currents to
complex bus voltages in the AC case. Let the nl × 1 vector
Bff be constructed similar to Yff , where the ith element is
bi and let Pf,shift be the nl × 1 vector whose ith element is
equal to −θishiftbi. Then the nodal real power injections can
be expressed as a linear function of Θ, the nb × 1 vector of
bus voltage angles

Pbus(Θ) = BbusΘ + Pbus,shift (24)

where Pbus,shift = (Cf − Ct)TPf,shift. Similarly, the branch
flows at the from ends of each branch are linear functions of
the bus voltage angles

Pf (Θ) = BfΘ + Pf,shift (25)

and, due to the lossless assumption, the flows at the to ends
are given by Pt = −Pf . The construction of the system B
matrices is analogous to the system Y matrices for the AC
model:

Bf = [Bff ] (Cf − Ct) (26)

Bbus = (Cf − Ct)TBf . (27)

The DC nodal power balance equations for the system can
be expressed in matrix form as

gP (Θ, Pg) = BbusΘ+Pbus,shift+Pd+Gsh−CgPg = 0 (28)

where Gsh approximates the amount of power consumed
by the constant impedance shunt elements under the voltage
assumption of (19).
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III. POWER FLOW

The standard power flow or loadflow problem involves
solving for the set of voltages and flows in a network
corresponding to a specified pattern of load and generation.
MATPOWER includes solvers for both AC and DC power flow
problems, both of which involve solving a set of equations of
the form

g(x) = 0 (29)

constructed by expressing a subset of the nodal power balance
equations as functions of unknown voltage quantities.

All of MATPOWER’s solvers exploit the sparsity of the
problem and, except for Gauss-Seidel, scale well to very
large systems. Currently, none of them include any automatic
updating of transformer taps or other techniques to attempt to
satisfy typical OPF constraints, such as generator, voltage or
branch flow limits.

A. AC Power Flow

In MATPOWER, by convention, a single generator bus is
typically chosen as a reference bus to serve the roles of both
a voltage angle reference and a real power slack. The voltage
angle at the reference bus has a known value, but the real
power generation at the slack bus is taken as unknown to avoid
overspecifying the problem. The remaining generator buses are
classified as PV buses, with the values of voltage magnitude
and generator real power injection given. Since the loads Pd
and Qd are also given, all non-generator buses are PQ buses,
with real and reactive injections fully specified. Let Iref , IPV

and IPQ denote the sets of bus indices of the reference bus,
PV buses, and PQ buses, respectively.

In the traditional formulation of the AC power flow problem,
the power balance equation in (17) is split into its real and
reactive components, expressed as functions of the voltage
angles Θ and magnitudes Vm and generator injections Pg and
Qg , where the load injections are assumed constant and given:

gP (Θ, Vm, Pg) = Pbus(Θ, Vm) + Pd − CgPg = 0 (30)
gQ(Θ, Vm, Qg) = Qbus(Θ, Vm) +Qd − CgQg = 0. (31)

For the AC power flow problem, the function g(x) from (29)
is formed by taking the left-hand side of the real power balance
equations (30) for all non-slack buses and the reactive power
balance equations (31) for all PQ buses and plugging in the
reference angle, the loads and the known generator injections
and voltage magnitudes:

g(x) =

[
g
{i}
P (Θ, Vm, Pg)

g
{j}
Q (Θ, Vm, Qg)

]
∀i ∈ IPV ∪ IPQ

∀j ∈ IPQ.
(32)

The vector x consists of the remaining unknown voltage
quantities, namely the voltage angles at all non-reference buses
and the voltage magnitudes at PQ buses:

x =

[
θ{i}

v
{j}
m

]
∀i /∈ Iref

∀j ∈ IPQ.
(33)

This yields a system of nonlinear equations with npv+2npq
equations and unknowns, where npv and npq are the number

of PV and PQ buses, respectively. After solving for x, the
remaining real power balance equation can be used to compute
the generator real power injection at the slack bus. Similarly,
the remaining npv + 1 reactive power balance equations yield
the generator reactive power injections.

MATPOWER includes four different algorithms for solving
the AC power flow problem. The default solver is based on a
standard Newton’s method [7] using a polar form and a full
Jacobian updated at each iteration. Each Newton step involves
computing the mismatch g(x), forming the Jacobian based
on the sensitivities of these mismatches to changes in x and
solving for an updated value of x by factorizing this Jacobian.
This method is described in detail in many textbooks.

Also included are solvers based on variations of the fast-
decoupled method [8], specifically, the XB and BX methods
described in [9]. These solvers greatly reduce the amount of
computation per iteration, by updating the voltage magnitudes
and angles separately based on constant approximate Jacobians
which are factored only once at the beginning of the solution
process. These per-iteration savings, however, come at the cost
of more iterations. The fourth algorithm is the standard Gauss-
Seidel method from Glimm and Stagg [10]. It has numerous
disadvantages relative to the Newton method and is included
primarily for academic interest.

By default, the AC power flow solvers simply solve
the problem described above, ignoring any generator limits,
branch flow limits, voltage magnitude limits, etc. However,
there is an option that allows for the generator reactive
power limits to be respected at the expense of the voltage
setpoint. This is done by adding an outer loop around the AC
power flow solution. If any generator has a violated reactive
power limit, its reactive injection is fixed at the limit, the
corresponding bus is converted to a PQ bus, and the power
flow is solved again. This procedure is repeated until there
are no more violations.

B. DC Power Flow

For the DC power flow problem [11], the vector x consists
of the set of voltage angles at non-reference buses

x =
[
θ{i}

]
, ∀i /∈ Iref (34)

and (29) takes the form

Bdcx− Pdc = 0 (35)

where Bdc is the (nb−1)×(nb−1) matrix obtained by simply
eliminating from Bbus the row and column corresponding to
the slack bus and reference angle, respectively. Given that the
generator injections Pg are specified at all but the slack bus,
Pdc can be formed directly from the non-slack rows of the last
four terms of (28).

The voltage angles in x are computed by a direct solution
of the set of linear equations. The branch flows and slack
bus generator injection are then calculated directly from the
bus voltage angles via (25) and the appropriate row in (28),
respectively.
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C. Linear Shift Factors

The DC power flow model can also be used to compute the
sensitivities of branch flows to changes in nodal real power
injections, sometimes called injection shift factors (ISF) or
generation shift factors [11]. These nl×nb sensitivity matrices,
also called power transfer distribution factors or PTDFs, carry
an implicit assumption about the slack distribution. If H is
used to denote a PTDF matrix, then the element in row i
and column j, hij , represents the change in the real power
flow in branch i given a unit increase in the power injected at
bus j, with the assumption that the additional unit of power
is extracted according to some specified slack distribution:

∆Pf = H∆Pbus. (36)

This slack distribution can be expressed as an nb×1 vector
w of non-negative weights whose elements sum to 1. Each
element specifies the proportion of the slack taken up at each
bus. For the special case of a single slack bus k, w is equal
to the vector ek. The corresponding PTDF matrix Hk can be
constructed by first creating the nl × (nb − 1) matrix

H̃k = B̃f ·B−1
dc (37)

then inserting a column of zeros at column k. Here B̃f and Bdc
are obtained from Bf and Bbus, respectively, by eliminating
their reference bus columns and, in the case of Bdc, removing
row k corresponding to the slack bus.

The PTDF matrix Hw, corresponding to a general slack
distribution w, can be obtained from any other PTDF, such
as Hk, by subtracting w from each column, equivalent to the
following simple matrix multiplication:

Hw = Hk(I − w · 1T). (38)

These same linear shift factors may also be used to compute
sensitivities of branch flows to branch outages, known as line
outage distribution factors or LODFs [12]. Given a PTDF
matrix Hw, the corresponding nl × nl LODF matrix L can
be constructed as follows, where lij is the element in row i
and column j, representing the change in flow in branch i (as
a fraction of its initial flow) for an outage of branch j.

First, let H represent the matrix of sensitivities of branch
flows to branch flows, found by multplying the PTDF matrix
by the node-branch incidence matrix:

H = Hw(Cf − Ct)T. (39)

If hij is the sensitivity of flow in branch i with respect to flow
in branch j, then lij can be expressed as

lij =


hij

1− hjj
i 6= j

−1 i = j.
(40)

MATPOWER includes functions for computing both the DC
PTDF matrix and the corresponding LODF matrix for either
a single slack bus k or a general slack distribution vector w.

IV. OPTIMAL POWER FLOW

MATPOWER includes code to solve both AC and DC
versions of the optimal power flow problem. The standard
version of each takes the following form:

min
x

f(x) (41)

subject to g(x) = 0 (42)
h(x) ≤ 0 (43)
xmin ≤ x ≤ xmax. (44)

A. Standard AC OPF

The optimization vector x for the standard AC OPF problem
consists of the nb × 1 vectors of voltage angles Θ and
magnitudes Vm and the ng × 1 vectors of generator real and
reactive power injections Pg and Qg .

x =


Θ

Vm

Pg

Qg

 (45)

The objective function (41) is simply a summation of individ-
ual polynomial cost functions f iP and f iQ of real and reactive
power injections, respectively, for each generator:

min
Θ,Vm,Pg,Qg

ng∑
i=1

f iP (pig) + f iQ(qig). (46)

The equality constraints in (42) are simply the full set of 2 ·nb
nonlinear real and reactive power balance equations from (30)
and (31). The inequality constraints (43) consist of two sets of
nl branch flow limits as nonlinear functions of the bus voltage
angles and magnitudes, one for the from end and one for the
to end of each branch:

hf (Θ, Vm) = |Ff (Θ, Vm)| − Fmax ≤ 0 (47)
ht(Θ, Vm) = |Ft(Θ, Vm)| − Fmax ≤ 0. (48)

The flows are typically apparent power flows expressed in
MVA, but can be real power or current flows, yielding the
following three possible forms for the flow constraints:

Ff (Θ, Vm) =


Sf (Θ, Vm), apparent power
Pf (Θ, Vm), real power
If (Θ, Vm), current

(49)

where If is defined in (9), Sf in (15), Pf = <{Sf}, and the
vector of flow limits Fmax has the appropriate units for the
type of constraint. It is likewise for Ft(Θ, Vm).

The variable limits (44) include an equality constraint on
any reference bus angle and upper and lower limits on all bus
voltage magnitudes and real and reactive generator injections:

θref
i ≤ θi ≤ θref

i , i ∈ Iref (50)
vi,min
m ≤ vim ≤ vi,max

m , i = 1 . . . nb (51)
pi,min
g ≤ pig ≤ pi,max

g , i = 1 . . . ng (52)

qi,min
g ≤ qig ≤ qi,max

g , i = 1 . . . ng. (53)
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B. Standard DC OPF

When using DC network modeling assumptions and limiting
polynomial costs to second order, the standard OPF problem
above can be simplified to a quadratic program, with linear
constraints and a quadratic cost function. In this case, the
voltage magnitudes and reactive powers are eliminated from
the problem completely and real power flows are modeled
as linear functions of the voltage angles. The optimization
variable is

x =

[
Θ

Pg

]
(60)

and the overall problem reduces to (54)–(59) at the bottom of
the page.

C. Extended OPF Formulation

MATPOWER employs an extensible OPF structure [6] to
allow the user to modify or augment the problem formulation
without rewriting the portions that are shared with the stan-
dard OPF formulation. This is done through optional input
parameters, preserving the ability to use pre-compiled solvers.
The standard formulation is modified by introducing additional
optional user-defined costs fu, constraints, and variables z and
can be written in the following form:

min
x,z

f(x) + fu(x, z) (61)

subject to g(x) = 0 (62)
h(x) ≤ 0 (63)
xmin ≤ x ≤ xmax (64)

l ≤ A

[
x

z

]
≤ u (65)

zmin ≤ z ≤ zmax. (66)

The user-defined cost function fu is specified in terms a
set of parameters in a pre-defined form described in detail
in [6]. This form provides the flexibility to handle a wide
range of costs, from simple linear functions of the optimization
variables to scaled quadratic penalties on quantities, such as
voltages, lying outside a desired range, to functions of linear
combinations of variables, inspired by the requirements of
price coordination terms found in the decomposition of large
loosely coupled problems encountered in our own research.

D. Standard Extensions

In addition to making this extensible OPF structure available
to end users, MATPOWER also takes advantage of it internally
to implement several additional capabilities.

1) Piecewise Linear Costs: The standard OPF formulation
in (41)–(44) does not directly handle the non-smooth piecewise
linear cost functions that typically arise from discrete bids and
offers in electricity markets. When such cost functions are
convex, however, they can be modeled using a constrained cost
variable (CCV) method. The piecewise linear cost function
c(x) is replaced by a helper variable y and a set of linear
constraints that form a convex “basin” requiring the cost
variable y to lie in the epigraph of the function c(x).

A convex n-segment piecewise linear cost function

c(x) =


m1(x− x1) + c1, x ≤ x1

m2(x− x2) + c2, x1 < x ≤ x2

...
...

mn(x− xn) + cn, xn−1 < x

(67)

can be defined by a sequence of points (xj , cj), j = 0 . . . n,
where mj denotes the slope of the jth segment

mj =
cj − cj−1

xj − xj−1
, j = 1 . . . n (68)

and x0 < x1 < · · · < xn and m1 ≤ m2 ≤ · · · < mn.
The “basin” corresponding to this cost function is formed

by the following n constraints on the helper cost variable y:

y ≥ mj(x− xj) + cj , j = 1 . . . n. (69)

The cost term added to the objective function in place of c(x)
is simply the variable y. For an AC or DC OPF, MATPOWER
uses this CCV approach internally to automatically generate
the appropriate helper variable, cost term, and corresponding
set of constraints for any piecewise linear generator costs.

2) Dispatchable Loads: A simple approach to dispatchable
or price-sensitive loads is to model them as negative real power
injections with associated negative costs. This is done by
specifying a generator with a negative output, ranging from a
minimum injection equal to the negative of the largest possible
load to a maximum injection of zero. With this model, if the
negative cost corresponds to a benefit for consumption, mini-
mizing the cost f(x) of generation is equivalent to maximizing
social welfare.

With an AC network model, there is also the question of
reactive dispatch for such loads. In MATPOWER, it is assumed

min
Θ,Pg

ng∑
i=1

f iP (pig) (54)

subject to gP (Θ, Pg) = BbusΘ + Pbus,shift + Pd +Gsh − CgPg = 0 (55)
hf (Θ) = BfΘ + Pf,shift − Fmax ≤ 0 (56)
ht(Θ) = −BfΘ− Pf,shift − Fmax ≤ 0 (57)
θref
i ≤ θi ≤ θref

i , i ∈ Iref (58)
pi,min
g ≤ pig ≤ pi,max

g , i = 1 . . . ng (59)
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TABLE I
OPF TEST CASES

Case Name Cost Sizes AC OPF DC OPF Binding Constraints
nb ng nl nx ngh nx ngh V min

m |Smax
f/t

| |Pmax
f/t

|
case9 Q 9 3 9 24 36 12 27 0 0 0
case30 Q 30 6 41 72 142 36 112 0 2 0
case npcc36 L 36 43 121 158 314 79 278 0 0 0
case118 Q 118 54 186 344 608 172 490 0 0 0
case300 Q 300 69 411 738 1,422 369 1,122 0 0 0
case2383wp L 2,383 327 2,896 5,420 10,558 2,710 8,175 2 6 5
case2736sp L 2,736 270 3,269 6,012 12,010 3,006 9,274 0 1 1
case3120sp L 3,120 298 3,693 6,836 13,626 3,418 10,506 0 8 10
case2935 Q 2,935 1,024 7,028 7,918 6,314 3,959 3,379 19 7 9
case21k L 21,084 2,692 25,001 54,091 111,784 30,315 90,700 3 64 40
case42k L 42,168 5,384 50,001 107,027 222,796 59,475 180,628 3 137 66

that dispatchable loads maintain a constant power factor and an
additional equality constraint is automatically added to enforce
this requirement for any “negative generator” being used to
model a dispatchable load.

3) Generator Capability Curves: The typical AC OPF
formulation includes simple box constraints on a generator’s
real and reactive injections. However, the true P -Q capability
curves of physical generators usually involve some tradeoff
between real and reactive capability. If the user provides the
parameters defining this tradeoff for a generator, MATPOWER
automatically constructs the corresponding constraints.

4) Branch Angle Difference Limits: The difference between
the bus voltage angle θf at the from end of a branch and the
angle θt at the to end can be bounded above and below to act
as a proxy for a transient stability limit, for example. If these
limits are provided, MATPOWER creates the corresponding
constraints on the voltage angle variables.

E. Solvers

Early versions of MATPOWER relied on Matlab’s Optimiza-
tion Toolbox [13] to provide the NLP and QP solvers needed to
solve the AC and DC OPF problems, respectively. While they
worked reasonably well for very small systems, they did not
scale well to larger networks. Eventually, optional packages
with additional solvers were added to improve performance,
typically relying on Matlab extension (MEX) files imple-
mented in Fortran or C and pre-compiled for each machine
architecture. For DC optimal power flow, there is a MEX
build [14] of the high performance BPMPD solver [15] for
LP/QP problems. For the AC OPF problem, the MINOPF [16]
and TSPOPF [17] packages provide solvers suitable for much
larger systems. The former is based on MINOS [18] and the
latter includes the primal-dual interior point and trust region
based augmented Lagrangian methods described in [19].

Beginning with version 4, MATPOWER also includes its own
primal-dual interior point solver (MIPS) implemented in pure-
Matlab code, derived from the MEX implementation of the
corresponding algorithms in [19]. If no optional packages are
installed, the MIPS solver will be used by default for both
the AC OPF and as the QP solver used by the DC OPF.
The AC OPF solver also employs a unique technique for
efficiently forming the required Hessians via a few simple
matrix operations. The MIPS solver has application to general

nonlinear optimization problems outside of MATPOWER and
comes with a convenience wrapper function to make it trivial
to set up and solve LP and QP problems.

V. ADDITIONAL FUNCTIONALITY

As mentioned earlier, MATPOWER was birthed out of a need
for an OPF-based electricity auction clearing mechanism for
a “smart market”. In this context, offers to sell and bids to
buy power from generators and loads define the “costs” for
the OPF that determines the allocations and prices used to
clear the auction. MATPOWER includes code that takes bids
and offers for real or reactive power, sets up and runs the
corresponding OPF, and returns the cleared bids and offers.

The standard OPF formulation described above includes no
mechanism for completely shutting down generators which are
very expensive to operate. Instead they are simply dispatched
at their minimum generation limits. MATPOWER includes the
capability to run an OPF combined with a unit de-commitment
for a single time period, which allows it to shut down these
expensive units and find a least cost commitment and dispatch
using an algorithm similar to dynamic programming.

In some cases, it may be desirable to further constrain an
OPF solution with the requirement to hold a specified level
of capacity in reserve to cover contingencies. MATPOWER in-
cludes OPF extensions that allow it to co-optimize energy and
reserves, subject to a set of fixed zonal reserve requirements.
This code also serves as an example of how to customize the
standard OPF with additional variables, costs, and constraints.

VI. RESULTS AND CONCLUSIONS

Several example cases are used to compare the performance
of the various OPF solvers on example networks ranging in
size from nine buses and three generators to tens of thousands
of buses, thousands of generators and tens of thousands of ad-
ditional user variables and constraints. Table I summarizes the
test cases in terms of the order of the cost function (quadratic
or linear), numbers of buses, generators and branches (nb, ng ,
and nl), numbers of variables and constraints (nx and ngh)
for both AC and DC OPF formulations, and the number of
binding lower voltage limits (V min

m ) and branch flow limits
(|Smax

f/t |) for the AC problem and flow limits (|Pmax
f/t |) for the

DC case.
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TABLE II
OPF RUN TIMES

Case Name
AC OPF Times (in seconds) DC OPF Times (in seconds)

Opt Tbx pure Matlab MEX Opt Tbx pure Matlab MEX
MIPS MIPS-sc MINOPF PDIPM SC-PDIPM MIPS MIPS-sc BPMPD

case9 0.147 0.080 0.120 0.012 0.024 0.027 0.014 0.019 0.020 0.009
case30 0.935 0.133 0.169 0.064 0.056 0.062 0.016 0.022 0.035 0.012
case npcc36 13.5 0.247 0.332 0.346 0.150 0.216 0.070 0.027 0.031 0.020
case118 – 0.313 0.492 0.428 0.232 0.322 0.244 0.051 0.065 0.023
case300 – 0.795 – 4.07 0.713 4.04 0.369 0.077 0.138 0.043
case2383wp – 8.24 10.2 94.8 7.80 8.94 9.00 5.62 5.91 –
case2736sp – 8.36 10.4 86.8 7.69 8.84 – 1.74 1.84 –
case3120sp – 14.1 17.7 384.9 12.8 15.0 9.96 6.98 7.32 7.95
case2935 – 15.2 18.1 1,262 15.3 17.5 – 5.28 5.68 –
case21k – 822.1 1,027 – 578.8 610.4 – 256.9 263.8 –
case42k – 5,232 5,933 – 3,700 3,701 – 1,241 1,224 –

For each case, six different AC OPF solvers and four
different DC OPF solvers were used to solve the problem
on a laptop with a 2.33-GHz Intel Core 2 Duo processor
running Matlab 7.9. Table II gives the run times in seconds
for the solvers which were successful, with the fastest time
highlighted in bold for each example. The first algorithm listed
for each is from Matlab’s Optimization Toolbox, fmincon in
the case of the AC OPF and linprog or quadprog for the
DC problem. Next are the standard and step-controlled variants
of the pure-Matlab implementation of the primal-dual interior
point method, and last are some of the C and Fortran-based
MEX solvers distributed as MATPOWER optional packages.

For small systems, the clear winners are MINOPF for AC
and BPMPD for DC, both Fortran-based MEX files. For
larger systems, the primal-dual interior point solvers have the
clear advantage, with the pure-Matlab implementation offering
respectable performance relative to the C-based MEX versions.

MATPOWER provides a high-level set of power flow and
optimal power flow tools for researchers, educators, and stu-
dents. The optimal power flow is extensible, allowing for easy
modification of the problem formulation. The performance
of the included OPF solvers, along with others available as
optional plug-ins, scales quite well to very large systems.
At the time of writing, there have been well over 20,000
downloads of MATPOWER, with about 50% primarily for
education, 43% for research and 7% for industry and other.
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ITESM, Monterrey, México, in 1987, the M.Sc.
degree in electrical engineering from the University
of Wisconsin-Madison in 1991, and the Ph.D. degree
in electrical engineering from Cornell University,
Ithaca, NY, in 1999. He is a Professor of engineering
at the Universidad Autónoma de Manizales, Maniza-
les, Colombia, and a Professor at the Universidad
Nacional de Colombia, also in Manizales. He is
a founding member of the Colombian Automation

Society (Asociación Colombiana de Automática). His interests include power
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