
MATPOWER
A MATLAB™ Power System Simulation Package

Version 3.0.0
February 14, 2005

User’s Manual

Ray D. Zimmerman Carlos E. Murillo-Sánchez Deqiang (David) Gan
rz10@cornell.edu carlos_murillo@ieee.org dgan@zju.edu.cn

© 1997-2005 Power Systems Engineering Research Center (PSERC)
School of Electrical Engineering, Cornell University, Ithaca, NY 14853

MATPOWER User’s Manual Version 3.0.0

2

Table of Contents

Table of Contents...2

1 Introduction..3

2 Getting Started ...3
2.1 System Requirements..3
2.2 Installation...4
2.3 Running a Power Flow..4
2.4 Running an Optimal Power Flow..4
2.5 Getting Help..4
3 Technical Reference ...5
3.1 Data File Format ...5
3.2 Modeling...7
3.3 Power Flow...9
3.4 Optimal Power Flow ...10
3.4.1 Traditional AC OPF Formulation...11
3.4.2 Generalized AC OPF Formulation (fmincon and MINOPF)..15
3.4.3 DC OPF Formulation ..20
3.5 Unit Decommitment Algorithm...20
3.6 MATPOWER Options ...21
3.7 Summary of the Files..25
4 Acknowledgments..29

5 References..29

Appendix A: Notes on LP-Solvers for MATLAB...30

Appendix B: Additional Notes..30

Appendix C: Auction Code ...31

MATPOWER User’s Manual Version 3.0.0

3

1 Introduction
What is MATPOWER?

MATPOWER is a package of MATLAB M-files for solving power flow and optimal power flow problems.
It is intended as a simulation tool for researchers and educators that is easy to use and modify.
MATPOWER is designed to give the best performance possible while keeping the code simple to under-
stand and modify. The MATPOWER home page can be found at:

http://www.pserc.cornell.edu/matpower/

Where did it come from?

MATPOWER was developed by Ray D. Zimmerman, Carlos E. Murillo-Sánchez and Deqiang Gan of
PSERC at Cornell University (http://www.pserc.cornell.edu/) under the direction of Robert Thomas. The
initial need for MATLAB based power flow and optimal power flow code was born out of the computa-
tional requirements of the PowerWeb project (see http://www.pserc.cornell.edu/powerweb/).

Who can use it?

• MATPOWER is free. Anyone may use it.
• We make no warranties, express or implied. Specifically, we make no guarantees regarding the

correctness MATPOWER’s code or its fitness for any particular purpose.
• Any publications derived from the use of MATPOWER must cite MATPOWER

http://www.pserc.cornell.edu/matpower/.
• Anyone may modify MATPOWER for their own use as long as the original copyright notices

remain in place.
• MATPOWER may not be redistributed without written permission.
• Modified versions of MATPOWER, or works derived from MATPOWER, may not be distributed

without written permission.

2 Getting Started

2.1 System Requirements
To use MATPOWER you will need:
• MATLAB version 5 or later1

• MATLAB Optimization Toolbox (required only for some OPF algorithms)
Both are available from The MathWorks (see http://www.mathworks.com/).

1 MATPOWER 2.0 and earlier required only version 4 of Matlab.

MATPOWER User’s Manual Version 3.0.0

4

2.2 Installation
Step 1: Go to the MATPOWER home page (http://www.pserc.cornell.edu/matpower/) and follow the

download instructions.
Step 2: Unzip the downloaded file.
Step 3: Place the files in a location in your MATLAB path.

2.3 Running a Power Flow

To run a simple Newton power flow on the 9-bus system specified in the file case9.m, with the default
algorithm options, at the MATLAB prompt, type:
>> runpf('case9')

2.4 Running an Optimal Power Flow

To run an optimal power flow on the 30-bus system whose data is in case30.m, with the default algo-
rithm options, at the MATLAB prompt, type:
>> runopf('case30')

To run an optimal power flow on the same system, but with the option for MATPOWER to shut down
(decommit) expensive generators, type:
>> runuopf('case30')

2.5 Getting Help

As with MATLAB’s built-in functions and toolbox routines, you can type help followed by the name of a
command or M-file to get help on that particular function. Nearly all of MATPOWER’s M-files have
such documentation. For example, the help for runopf looks like:

>> help runopf
 RUNOPF Runs an optimal power flow.

 [baseMVA, bus, gen, gencost, branch, f, success, et] = ...
 runopf(casename, mpopt, fname, solvedcase)

 Runs an optimal power flow and optionally returns the solved values in
 the data matrices, the objective function value, a flag which is true if
 the algorithm was successful in finding a solution, and the elapsed time
 in seconds. All input arguments are optional. If casename is provided it
 specifies the name of the input data file or struct (see also 'help
 caseformat' and 'help loadcase') containing the opf data. The default
 value is 'case9'. If the mpopt is provided it overrides the default
 MATPOWER options vector and can be used to specify the solution
 algorithm and output options among other things (see 'help mpoption' for
 details). If the 3rd argument is given the pretty printed output will be
 appended to the file whose name is given in fname. If solvedcase is
 specified the solved case will be written to a case file in MATPOWER
 format with the specified name. If solvedcase ends with '.mat' it saves
 the case as a MAT-file otherwise it saves it as an M-file.

MATPOWER User’s Manual Version 3.0.0

5

MATPOWER also has many options which control the algorithms and the output. Type:
>> help mpoption

and see Section 3.6 for more information on MATPOWER's options.

3 Technical Reference

3.1 Data File Format
The data files used by MATPOWER are simply MATLAB M-files or MAT-files which define and return
the variables baseMVA, bus, branch, gen, areas, and gencost. The baseMVA variable is a scalar and the
rest are matrices. Each row in the matrix corresponds to a single bus, branch, or generator. The columns
are similar to the columns in the standard IEEE and PTI formats. The details of the specification of the
MATPOWER case file can be found in the help for caseformat.m:

>> help caseformat

CASEFORMAT Defines the MATPOWER case file format.
 A MATPOWER case file is an M-file or MAT-file which defines the variables
 baseMVA, bus, gen, branch, areas, and gencost. With the exception of
 baseMVA, a scalar, each data variable is a matrix, where a row corresponds
 to a single bus, branch, gen, etc. The format of the data is similar to
 the PTI format described in
 http://www.ee.washington.edu/research/pstca/formats/pti.txt
 except where noted. An item marked with (+) indicates that it is included
 in this data but is not part of the PTI format. An item marked with (-) is
 one that is in the PTI format but is not included here. The columns for
 each data matrix are given below.

 See also IDX_BUS, IDX_BRCH, IDX_GEN, IDX_AREA and IDX_COST regarding
 constants which can be used as named column indices for the data matrices.
 Also described in the first three are additional columns that are added
 to the bus, branch and gen matrices by the power flow and OPF solvers.

 Bus Data Format
 1 bus number (1 to 29997)
 2 bus type
 PQ bus = 1
 PV bus = 2
 reference bus = 3
 isolated bus = 4
 3 Pd, real power demand (MW)
 4 Qd, reactive power demand (MVAr)
 5 Gs, shunt conductance (MW (demanded) at V = 1.0 p.u.)
 6 Bs, shunt susceptance (MVAr (injected) at V = 1.0 p.u.)
 7 area number, 1-100
 8 Vm, voltage magnitude (p.u.)
 9 Va, voltage angle (degrees)
 (-) (bus name)
 10 baseKV, base voltage (kV)

MATPOWER User’s Manual Version 3.0.0

6

 11 zone, loss zone (1-999)
 (+) 12 maxVm, maximum voltage magnitude (p.u.)
 (+) 13 minVm, minimum voltage magnitude (p.u.)

 Generator Data Format
 1 bus number
 (-) (machine identifier, 0-9, A-Z)
 2 Pg, real power output (MW)
 3 Qg, reactive power output (MVAr)
 4 Qmax, maximum reactive power output (MVAr)
 5 Qmin, minimum reactive power output (MVAr)
 6 Vg, voltage magnitude setpoint (p.u.)
 (-) (remote controlled bus index)
 7 mBase, total MVA base of this machine, defaults to baseMVA
 (-) (machine impedance, p.u. on mBase)
 (-) (step up transformer impedance, p.u. on mBase)
 (-) (step up transformer off nominal turns ratio)
 8 status, > 0 - machine in service
 <= 0 - machine out of service
 (-) (% of total VAr's to come from this gen in order to hold V at
 remote bus controlled by several generators)
 9 Pmax, maximum real power output (MW)
 10 Pmin, minimum real power output (MW)

 Branch Data Format
 1 f, from bus number
 2 t, to bus number
 (-) (circuit identifier)
 3 r, resistance (p.u.)
 4 x, reactance (p.u.)
 5 b, total line charging susceptance (p.u.)
 6 rateA, MVA rating A (long term rating)
 7 rateB, MVA rating B (short term rating)
 8 rateC, MVA rating C (emergency rating)
 9 ratio, transformer off nominal turns ratio (= 0 for lines)
 (taps at 'from' bus, impedance at 'to' bus, i.e. ratio = Vf / Vt)
 10 angle, transformer phase shift angle (degrees)
 (-) (Gf, shunt conductance at from bus p.u.)
 (-) (Bf, shunt susceptance at from bus p.u.)
 (-) (Gt, shunt conductance at to bus p.u.)
 (-) (Bt, shunt susceptance at to bus p.u.)
 11 initial branch status, 1 - in service, 0 - out of service

 (+) Area Data Format
 1 i, area number
 2 price_ref_bus, reference bus for that area

 (+) Generator Cost Data Format
 NOTE: If gen has n rows, then the first n rows of gencost contain
 the cost for active power produced by the corresponding generators.
 If gencost has 2*n rows then rows n+1 to 2*n contain the reactive
 power costs in the same format.
 1 model, 1 - piecewise linear, 2 - polynomial

MATPOWER User’s Manual Version 3.0.0

7

 2 startup, startup cost in US dollars
 3 shutdown, shutdown cost in US dollars
 4 n, number of cost coefficients to follow for polynomial
 cost function, or number of data points for piecewise linear
 5 and following, cost data defining total cost function
 For polynomial cost:
 c2, c1, c0
 where the polynomial is c0 + c1*P + c2*P^2
 For piecewise linear cost:
 x0, y0, x1, y1, x2, y2, ...
 where x0 < x1 < x2 < ... and the points (x0,y0), (x1,y1),
 (x2,y2), ... are the end- and break-points of the cost function.

Some columns are added to the bus, branch and gen matrices by the solvers. See the help for idx_bus,
idx_brch, and idx_gen for more details.

3.2 Modeling

AC Formulation

Fixed loads are modeled as constant real and reactive power injections,

€

Pd and

€

Qd specified in columns 3
and 4, respectively, of the bus matrix. The shunt admittance of any constant impedance shunt elements at
a bus are specified by

€

Gsh and

€

Bsh in columns 5 and 6, respectively, of the bus matrix

€

Ysh =
Gsh + jBsh
baseMVA

Each branch, whether transmission line, transformer or phase shifter, is modeled as a standard π-model
transmission line, with series resistance R and reactance X and total line charging capacitance

€

Bc, in series
with an ideal transformer and phase shifter, at the from end, with tap ratio

€

τ and phase shift angle

€

θshift .
The parameters R, X,

€

Bc,

€

τ and

€

θshift , are found in columns 3, 4, 5, 9 and 10 of the branch matrix, respec-
tively. The branch voltages and currents at the from and to ends of the branch are related by the branch
admittance matrix

€

Ybr as follows

€

I f
I t

 =Ybr

Vf

Vt

 (1)

where

€

Ybr =
Ys + j Bc

2

1
τ 2

−Ys
1

τe jθshift

−Ys
1

τe− jθshift
Ys + j Bc

2

 and

€

Ys =
1

R+ jX
.

The elements of the individual branch admittance matrices and the bus shunt admittances are combined
by MATPOWER to form a complex bus admittance matrix

€

Ybus , relating the vector of complex bus volt-
ages

€

Vbus with the vector of complex bus current injections

€

Ibus

€

Ibus =YbusVbus

MATPOWER User’s Manual Version 3.0.0

8

Similarly, admittance matrices

€

Yf and

€

Yt , are formed to compute the vector of complex current injections
at the from and to ends of each line, given the bus voltages

€

Vbus .

€

If =YfVbus
It =YtVbus

The vectors of complex bus power injections, and branch power injections can be expressed as

€

Sbus = diag(Vbus)Ibus*

Sf = diag(Vf)If*

St = diag(Vt)It*

where

€

Vf and

€

Vt are vectors of the complex bus voltages at the from and to ends, respectively, of all
branches, and diag() converts a vector into a diagonal matrix with the specified vector on the diagonal.

DC Formulation

For the DC formulation, the same parameters are used, with the exception that the following assumptions
are made:

• Branch resistances R and charging capacitances

€

Bc are negligible (i.e. branches are lossless).
• All bus voltage magnitudes are close to 1 p.u.
• Voltage angle differences are small enough that

€

sinθij ≈θij .

Combining these assumptions and equation (1) with the fact that

€

S =VI * , the relationship between the
real power flows and voltage angles for an individual branch can be written as

€

Pf
Pt

 = Bbr

θ f

θ t

 +

Pf ,shift
Pt,shift

 (2)

where

€

Bbr =
1
Xτ

1 −1
−1 1

 (3)

€

Pf ,shift
Pt ,shift

 =

θshift
Xτ

1
−1

 . (4)

The elements of the individual branch shift injections and

€

Bbr matrices are combined by MATPOWER to
form a bus

€

Bbus matrix and

€

Pbus,shift shift injection vector, which can be used to compute bus real power
injections from bus voltage angles

MATPOWER User’s Manual Version 3.0.0

9

€

Pbus = Bbusθbus +Pbus,shift

Similarly, MATPOWER builds the matrix

€

Bf and the vector

€

Pf,shift which can be used to compute the
vector s

€

Pf and

€

Pt of branch real power injections

€

Pf = Bfθbus +Pf,shift
Pt = −Pf

3.3 Power Flow

MATPOWER has five power flow solvers, which can be accessed via the runpf function. In addition to
printing output to the screen, which it does by default, runpf optionally returns the solution in output ar-
guments:
>> [baseMVA, bus, gen, branch, success, et] = runpf(casename);

The solution values are stored as follows:
bus(:, VM) bus voltage magnitudes
bus(:, VA) bus voltage angles
gen(:, PG) generator real power injections
gen(:, QG) generator reactive power injections
branch(:, PF) real power injected into “from” end of branch
branch(:, PT) real power injected into “to” end of branch
branch(:, QF) reactive power injected into “from” end of branch
branch(:, QT) reactive power injected into “to” end of branch
success 1 = solved successfully, 0 = unable to solve
et computation time required for solution

The default power flow solver is based on a standard Newton’s method [12] using a full Jacobian, up-
dated at each iteration. This method is described in detail in many textbooks. Algorithms 2 and 3 are
variations of the fast-decoupled method [10]. MATPOWER implements the XB and BX variations as de-
scribed in [1]. Algorithm 4 is the standard Gauss-Seidel method from Glimm and Stagg [5], based on
code contributed by Alberto Borghetti, from the University of Bologna, Italy. To use one of the power
flow solvers other than the default Newton method, the PF_ALG option must be set explicitly. For ex-
ample, for the XB fast-decoupled method:
>> mpopt = mpoption('PF_ALG', 2);
>> runpf(casename, mpopt);

The last method is a DC power flow [13], which is obtained by executing runpf with the PF_DC option
set to 1, or equivalently by executing rundcpf directly. The DC power flow is obtained by a direct, non-
iterative solution of the bus voltage angles from the specified bus real power injections, based on equa-
tions (2), (3) and (4).
For the AC power flow solvers, if the ENFORCE_Q_LIMS option is set to true (default is false), then if any
generator reactive power limit is violated after running the AC power flow, the corresponding bus is con-
verted to a PQ bus, with the reactive output set to the limit, and the case is re-run. The voltage magnitude
at the bus will deviate from the specified value in order to satisfy the reactive power limit. If the generator
at the reference bus is reaches a reactive power limit and the bus is converted to a PQ bus, the first re-
maining PV bus will be used as the slack bus for the next iteration. This may result in the real power out-
put at this generator being slightly off from the specified values.

MATPOWER User’s Manual Version 3.0.0

10

Currently, none of MATPOWER’s power flow solvers include any transformer tap changing or handling
of disconnected or de-energized sections of the network.
Performance of the power flow solvers, with the exception of Gauss-Seidel, should be excellent even on
very large-scale power systems, since the algorithms and implementation take advantage of MATLAB’s
built-in sparse matrix handling.

3.4 Optimal Power Flow
MATPOWER includes several solvers for the optimal power flow (OPF) problem, which can be accessed
via the runopf function. In addition to printing output to the screen, which it does by default, runopf op-
tionally returns the solution in output arguments:
>> [baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(casename);

In addition to the values listed for the power flow solvers, the OPF solution also includes the following
values:

bus(:, LAM_P) Lagrange multiplier on bus real power mismatch
bus(:, LAM_Q) Lagrange multiplier on bus reactive power mismatch
bus(:, MU_VMAX) Kuhn-Tucker multiplier on upper bus voltage limit
bus(:, MU_VMIN) Kuhn-Tucker multiplier on lower bus voltage limit
gen(:, MU_PMAX) Kuhn-Tucker multiplier on upper generator real power limit
gen(:, MU_PMIN) Kuhn-Tucker multiplier on lower generator real power limit
gen(:, MU_QMAX) Kuhn-Tucker multiplier on upper generator reactive power limit
gen(:, MU_QMIN) Kuhn-Tucker multiplier on lower generator reactive power limit
branch(:, MU_SF) Kuhn-Tucker multiplier on MVA limit at "from" end of branch
branch(:, MU_ST) Kuhn-Tucker multiplier on MVA limit at "to" end of branch
f final objective function value

The (chronologically) first of the OPF solvers in MATPOWER is based on the constr function included
in earlier versions of MATLAB’s Optimization Toolbox, which uses a successive quadratic programming
technique with a quasi-Newton approximation for the Hessian matrix. The second approach is based on
linear programming. It can use the LP solver in the Optimization Toolbox or other MATLAB LP solvers
available from third parties. Version 3 of MATPOWER has a new generalized OPF formulation that al-
lows general linear constraints on the optimization variables, but requires fmincon.m found in MATLAB’s
Optimization Toolbox 2.0 or later, or the MINOS [14] based MEX file available separately as part of the
optional MINOPF package (see http://www.pserc.cornell.edu/minopf/). MINOPF is distributed sepa-
rately because it has a more restrictive license than MATPOWER.
The performance of MATPOWER’s OPF solvers depends on several factors. First, the constr function
uses an algorithm which does not exploit or preserve sparsity, so it is inherently limited to small power
systems. The same is still true for the combination of parameters required to be able to employ the newer
fmincon function. The LP-based algorithm, on the other hand, does preserve sparsity. However, the LP-
solver included in the older Optimization Toolbox does not exploit this sparsity. In fact, the LP-based
method with the old LP solver performs worse than the constr-based method, even on small systems.
Fortunately, there are LP-solvers available from third parties which do exploit sparsity. In general, these
yield much higher performance. One in particular, called BPMPD [8] (actually a QP-solver), has proven
to be robust and efficient. Even the constr or fmincon-based methods, when tricked into calling
BPMPD with full matrix data instead of the older qp.m, become much faster.
It should be noted, however, that even with a good LP-solver, MATPOWER’s LP-based OPF solver, un-
like its power flow solver, is not suitable for very-large scale problems. Substantial improvements in per-
formance may still be possible, though they may require significantly more complicated coding and pos-
sibly a custom LP-solver. However, when speed is of the essence, the preferred choice is the MINOS-

MATPOWER User’s Manual Version 3.0.0

11

based MEX file solver; assuming that its licensing requirements can be met. It is coded in FORTRAN
and evaluates the required Jacobians using an optimized structure that follows the order of evaluation im-
posed by the compressed-column sparse format which is employed by MINOS. In fact, the new general-
ized formulation introduced in this version of MATPOWER is inspired by the data format used by
MINOS.
MATPOWER’s OPF implementation is not able to handle de-energized sections of the network.

3.4.1 Traditional AC OPF Formulation

The AC optimal power flow problem solved by MATPOWER is a “smooth” OPF with no discrete vari-
ables or controls. The objective function is the total cost of real and/or reactive generation. These costs
may be defined as polynomials or as piecewise-linear functions of generator output. The problem is for-
mulated as follows:

€

min
θ,V ,Pg ,Qg

f1i(Pgi)+ f2i(Qgi)
i
∑

subject to

€

Pi(θ,V)−Pgi +Pdi = 0 (active power balance equations)

€

Qi(θ,V)−Qgi +Qdi = 0 (reactive power balance equations)

€

Sij
f (θ,V) ≤ Sij

max (apparent power flow limit of lines, from end)

€

Sij
t (θ,V) ≤ Sij

max (apparent power flow limit of lines, to end)

Vi
min ≤ Vi ≤ Vi

max (bus voltage limits)

Pgi
min ≤ Pgi ≤ Pgi

max (active power generation limits)

Qgi
min ≤ Qgi ≤ Qgi

max (reactive power generation limits)

Here f1i and f2i are the costs of active and reactive power generation, respectively, for generator i at a given
dispatch point. Both f1i and f2i are assumed to be polynomial or piecewise-linear functions. By defining
the variable x as

€

x =

θ

V
Pg
Qg

the problem can be expressed compactly as follows:

€

min
x
f (x)

subject to

€

g1(x) = 0 (power balance equations)

€

g2 (x) ≤ 0 (branch flow limits)

€

xmin ≤ x ≤ xmax (variable limits)

MATPOWER User’s Manual Version 3.0.0

12

Optimization Toolbox Based OPF Solver (constr)

The first of the two original OPF solvers in MATPOWER is based on the constr non-linear constrained
optimization function in MATLAB’s Optimization Toolbox. The constr function and the algorithms it
uses are covered in the older Optimization Toolbox manual [6]. MATPOWER provides constr with two
M-files which it uses during for the optimization. One computes the objective function, f, and the con-
straint violations, g, at a given point, x, and the other computes their gradients ∂f ∂x and ∂g ∂x .
MATPOWER has two versions of these M-files. One set is used to solve systems with polynomial cost
functions. In this formulation, the cost functions are included in a straightforward way into the objective
function. The other set is used to solve systems with piecewise-linear costs. Piecewise-linear cost func-
tions are handled by introducing a cost variable for each piecewise-linear cost function. The objective
function is simply the sum of these cost variables which are then constrained to lie above each of the lin-
ear functions which make up the piecewise-linear cost function. Clearly, this method works only for con-
vex cost functions. In the MATPOWER documentation this will be referred to as a constrained cost vari-
able (CCV) formulation.
The algorithm codes 100 and 200, respectively, are used to identify the constr-based solver for polyno-
mial and piecewise-linear cost functions. If algorithm 200 is chosen for a system with polynomial cost
function, the cost function will be approximated by a piecewise-linear function by evaluating the polyno-
mial at a fixed number of points determined by the options vector (see Section 3.6 for more details on the
MATPOWER options).
It should be noted that the constr-based method can also benefit from a superior QP-solver such as
bpmpd. See Appendix A for more information on LP and QP-solvers.

LP-Based OPF Solver (LPconstr)

Linear programming based OPF methods are in wide use today in the industry. However, the LP-based
algorithm included in MATPOWER is much simpler than the algorithms used in production-grade soft-
ware.
The LP-based methods in MATPOWER use the same problem formulation as the constr-based meth-
ods, including the CCV formulation for the case of piecewise-linear costs. The compact form of the OPF
problem can be rewritten to partition g into equality and inequality constraints, and to partition the vari-
able x as follows:

min
x

f (x2)

subject to
g1(x1,x2) = 0 (equality constraints)
g2 (x1, x2) ≤ 0 (inequality constraints)

where x1 contains the system voltage magnitudes and angles, and x2 contains the generator real and reac-
tive power outputs (and corresponding cost variables for the CCV formulation). This is a general non-
linear programming problem, with the additional assumption that the equality constraints can be used to
solve for x1, given a value for x2.
The LP-based OPF solver is implemented with a function LPconstr, which is similar to constr in that it
uses the same M-files for computing the objective function, constraints, and their respective gradients. In
addition, a third M-file (lpeqslvr.m) is needed to solve for x1 from the equality constraints, given a value
for x2. This architecture makes it relatively simple to modify the formulation of the problem and still be
able to use both the constr-based and LP-based solvers.

MATPOWER User’s Manual Version 3.0.0

13

The algorithm proceeds as follows, where the superscripts denote iteration number:
Step 0: Set iteration counter k ← 0 and choose an appropriate initial value, call it x2

0 , for x2.

Step 1: Solve the equality constraint (power flow) equations g1(x1
k, x2

k) = 0 for x1
k .

Step 2: Linearize the problem around xk, solve the resulting LP for ∆x.

min
Δx

∂f
∂x x= x k

 ⋅ Δx

subject to
∂g
∂x x= x k

 ⋅ Δx ≤ −g(xk)

−Δ ≤ Δx ≤ Δ

Step 3: Set k ← k +1 , update current solution xk = xk−1 + Δx .
Step 4: If xk meets termination criteria, stop, otherwise go to step 5.
Step 5: Adjust step size limit ∆ based on the trust region algorithm in [3], go to step 1.
The termination criteria is outlined below:

∂L
∂x

=
∂f
∂x

+ λT ⋅
∂g
∂x

≤ tolerance1

g(x) ≤ tolerance2
Δx ≤ tolerance3

Here λ is the vector of Lagrange multipliers of the LP problem. The first condition pertains to the size of
the gradient, the second to the violation of constraints, and the third to the step size. More detail can be
found in [4].
Quite frequently, the value of xk given by step 1 is infeasible and could result in an infeasible LP problem.
In such cases, a slack variable is added for each violated constraint. These slack variables must be zero at
the optimal solution.
The LPconstr function implements the following three methods:

• sparse formulation with full set of inequality constraints
• sparse formulation with relaxed constraints (ICS, Iterative Constraint Search)
• dense formulation with relaxed constraints (ICS) [11]

These three methods are specified using algorithm codes 160, 140, and 120, respectively, for systems
with polynomial costs, and 260, 240, and 220, respectively, for systems with piecewise-linear costs. As
with the constr-based method, selecting one of the 2xx algorithms for a system with polynomial cost will
cause the cost to be replaced by a piecewise-linear approximation.
In the dense formulation, some of the variables x1 and the equality constraints g1 are eliminated from the
problem before posing the LP sub-problem. This procedure is outlined below. Suppose the LP sub-
problem is given by:

MATPOWER User’s Manual Version 3.0.0

14

min cT ⋅ Δx
subject to

A ⋅ Δx ≤ b
−Δ ≤ Δx ≤ Δ

If this is rewritten as:

min c1
T ⋅ Δx1 + c2

T ⋅ Δx2

subject to
A11 ⋅ Δx1 + A12 ⋅ Δx2 = b1
A21 ⋅ Δx1 + A22 ⋅ Δx2 ≤ b2

−Δ ≤ Δx ≤ Δ
Where A1 1 is a square matrix, ∆x1 can be computed as:

Δx1 = A11
−1(b1 − A12Δx2)

Substituting back in to the problem, yields a new LP problem:
min -c1

T A11
−1A12 + c2

T() ⋅ Δx2

subject to
A11 ⋅ Δx1 + A12 ⋅ Δx2 = b1

A21 ⋅ A11
−1(b1 − A12Δx2) + A22 ⋅ Δx2 ≤ b2
−Δ1 ≤ A11

−1(b1 − A12Δx2) ≤ Δ1
−Δ2 ≤ Δx2 ≤ Δ2

This new LP problem is smaller than the original, but it is no longer sparse.
As mentioned above, to realize the full potential of the LP-based OPF solvers, it will be necessary to ob-
tain a good LP-solver, such as bpmpd. See Appendix A for more details.

MATPOWER User’s Manual Version 3.0.0

15

3.4.2 Generalized AC OPF Formulation (fmincon and MINOPF)

The generalized AC OPF formulation used by the fmincon and MINOPF solvers can be written as fol-
lows:

€

min
x,y,z

f1i(Pgi)+ f2i(Qgi)()
i
∑ + c

x
y
z

subject to

€

gP (x) = P(θ,V)−Pg +Pd = 0 (active power balance equations)

€

gQ(x) =Q(θ,V)−Qg +Qd = 0 (reactive power balance equations)

€

gS f (x) = Sf (θ,V) ≤ Smax (apparent power flow limit of lines, from end)

€

gSt (x) = St (θ,V) ≤ Smax (apparent power flow limit of lines, to end)

€

l ≤ A
x
y
z

≤ u (general linear constraints)

€

xmin ≤ x ≤ xmax (voltage and generation variable limits)

where

€

x =

θ

V
Pg
Qg

is the vector of standard optimization variables for the OPF and (y, z) are other variables to be explained
later. The ability to include the general linear constraints and the extra linear cost vector c allow easy
modeling for the CCV formulation of piecewise linear costs and constant power factor dispatchable or
price-sensitive loads. Furthermore, because the user is given the ability to specify all or part of A, l and u,
it is possible to pose additional constraints such as restriction of angle differences or linearly-interrelated
injections, making MATPOWER even more useful as a research tool. The general formulation also allows
generator costs of mixed type (polynomial and piecewise linear) in the same problem. Note: In Optimi-
zation Toolbox versions 3.0 and earlier, fmincon seems to be providing inaccurate shadow prices on
the constraints. This did not happen with constr and it may be a bug in these versions of the Optimiza-
tion Toolbox.

Problem Data Transformation and General Linear Restrictions

To add general linear constraints of ones own, it is necessary to understand the standard transformations
performed on the input data (bus, gen, branch, areas and gencost tables) before the problem is solved
in order to know where the optimization variables end up in the x vector. All of these transformations are
reversed after solving the problem so that output data is in the right place in the tables.

MATPOWER User’s Manual Version 3.0.0

16

The first step filters out inactive generators and branches; original tables are saved for data output.
 comgen = find(gen(:,GEN_STATUS) > 0); % find online generators
 onbranch = find(branch(:,BR_STATUS) ~= 0); % find online branches
 gen = gen(comgen, :);
 branch = branch(onbranch, :);

The second step is a renumbering of the bus numbers in the bus table so that the resulting table contains
consecutively-numbered buses starting from 1:
 [i2e, bus, gen, branch, areas] = ext2int(bus, gen, branch, areas);

where i2e is saved for inverse reordering at the end. Finally, generators are further reordered by bus
number:
 ng = size(gen,1); % number of generators or injections
 [tmp, igen] = sort(gen(:, GEN_BUS));
 [tmp, inv_gen_ord] = sort(igen); % save for inverse reordering at the end
 gen = gen(igen, :);
 if ng == size(gencost,1) % This is because gencost might have
 gencost = gencost(igen, :); % twice as many rows as gen if there
 else % are reactive injection costs.
 gencost = gencost([igen; igen+ng], :);
 end

Having done this, the variables inside the x vector now have the same ordering as in the bus, gen tables:
 x = [Theta ; % nb bus voltage angles
 V ; % nb bus voltage magnitudes
 Pg ; % ng active power injections (p.u.) (ascending bus order)
 Qg]; % ng reactive power injections (p.u.)(ascending bus order)

and the nonlinear constraints have the same order as in the bus, branch tables
 g = [gp; % nb real power flow mismatches (p.u.)
 gq; % nb reactive power flow mismatches (p.u.)
 gsf; % nl "from" end apparent power injection limits (p.u.)
 gst]; % nl "to" end apparent power injection limits (p.u.)

With this setup, box bounds on the variables are applied as follows: the reference angle is bounded above
and below with the value specified for it in the original bus table. The V section of x is bounded above
and below with the corresponding values for VMAX and VMIN in the bus table. The Pg and Qg sections of
x are bounded above and below with the corresponding values for PMAX, PMIN, QMAX and QMIN in the gen
table. The nonlinear constraints are similarly setup so that gp and gq are equality constraints (zero RHS)
and the limits for gsf, gst are taken from the RATE_A column in the branch table.
The following example illustrates how an additional general linear constraint can be added to the problem
formulation. In the standard solution to case9.m, the voltage angle for bus 7 lags the voltage angle in bus
2 by 6.09 degrees. Suppose we want to limit that lag to 5 degrees at the most. A linear restriction of the
form

Theta(2) – Theta(7) <= 5 degrees

would do the trick. We have nb = 9 buses, ng = 3 generators and nl = 9 branches. Therefore the first 9
elements of x are bus voltage angles, elements 10:18 are bus voltage magnitudes, elements 19:21 are ac-
tive injections corresponding to the generators in buses 1, 2 and 3 (in that order) and elements 22:24 are
the corresponding reactive injections. Note that in this case the generators in the original data already ap-

MATPOWER User’s Manual Version 3.0.0

17

pear in ascending bus order, so no permutation with respect to the original data is necessary. Going back
to the angle restriction, we see that it can be cast as
 [0 1 0 0 0 0 -1 0 0 zeros(1,nb+ng+ng)] * x <= 5 degrees

We can set up the problem as follows:
 A = sparse([1;1], [2;7], [1;-1], 1, 24);
 l = -Inf;
 u = 5 * pi/180;
 mpopt = mpoption('OPF_ALG', 520); % use fmincon with generalized formulation
 opf('case9', A, l, u, mpopt)

which indeed restricts the angular separation to 5 degrees. NOTE: In this example, the total number of
variables is 24, but if there are any piecewise linear cost functions, there may be additional “helper” vari-
ables used by the solver and in that case the number of columns in A may need to be larger. The next
section describes how this is done. If all costs are polynomial, however, no extra variables are needed.

Piecewise linear convex cost formulation using constrained cost variables

The generalized formulation allows for an easy way to model any piecewise linear costs. Such a cost
curve looks like

This non-differentiable cost can be modeled using one helper cost variable for each such cost curve and
additional restrictions on this variable and Pg, one restriction for each segment of the curve. The restric-
tions build a convex “basin” and they are equivalent to saying that the cost variable must lie in the epi-
graph of the cost curve. When the cost is minimized, the cost variable will be pushed against this basin. If
the helper cost variable is y, then the contribution of the generators’ cost to the total cost is exactly y, and
in the above case the two restrictions needed are
 1)

€

y ≥ m1(Pg − x0)+ c0 (y must lie above the first segment)

 2)

€

y ≥ m2 (Pg − x1)+ c1 (y must lie above the second segment)

where m1 and m2 are the slopes of the two segments. Also needed, of course, are the box restrictions on
Pg: Pmin ≤ Pg ≤ Pmax. The additive part of the cost contributed by this generator is y.
In the generalized OPF formulation, the capability to accept general linear constraints is used to introduce
new y variables (one for each piecewise linear cost in the problem) and constraints (one for each cost
segment in the problem). The function that builds the coefficient matrix for the restrictions is makeAy.

MATPOWER User’s Manual Version 3.0.0

18

Because a linear cost on the y variables is also required, the last row of the matrix that is passed to the
solver is expected to contain not some linear restriction coefficients but a linear cost vector on [x; y]. In
normal use this is done automatically inside fmincopf (or mopf when using MINOPF) and the user need
not worry about this. To incorporate additional linear constraints, however, it is necessary to know in ad-
vance how many y variables there are so that the coefficient matrix for the user’s constraints have a
matching number of columns to multiply [x; y]. The number of y variables is equal to the number of
piecewise linear cost curves (both active and reactive) there are for the generators that are online.

Dispatchable loads

In general, dispatchable or price-sensitive loads can be modeled as negative real power injections with
associated costs. The current test is that if PMIN < PMAX = 0 for a generator, then it is really a dispatchable
load. If a load has a demand curve like the following

so that it will consume zero if the price is higher than price2, P1 if the price is less than price2 but higher
than price1, and P2 if the price is equal or lower than price1. Considered as a negative injection, the de-
sired dispatch is zero if the price is greater than price2, -P1 if the price is higher than price1 but lower
than price2, and -P2 if the price is equal to or lower than price1. This suggests the following piecewise
linear cost curve:

Note that this assumes that the demand blocks can be partially dispatched or “split”; if the price trigger
is reached half-way through the block, the load must accept the partial block. Otherwise, accepting or re-

MATPOWER User’s Manual Version 3.0.0

19

jecting whole blocks really poses a mixed-integer problem, which is outside the scope of the current
MATPOWER implementation.
When there are dispatchable loads, the issue of reactive dispatch arises. If the QMIN/QMAX generation lim-
its for the “negative generator” in question are not set to zero, then the algorithm will dispatch the reac-
tive injection to the most convenient value. Since this is not normal load behavior, in the generalized for-
mulation it is assumed that dispatchable loads maintain a constant power factor. The mechanism for
posing additional general linear constraints is employed to automatically include restrictions for these
injections to keep the ratio of Pg and Qg constant. This ratio is inferred from the values of PMIN and either
QMIN (for inductive loads) or QMAX (for capacitive loads) in the gen table. It is important to set these ap-
propriately, keeping in mind that PG is negative and that for normal inductive loads QG should also be
negative (a positive reactive load is a negative reactive injection). The initial values of the PG and QG col-
umns of the gen matrix must be consistent with the ratio defined by PMIN and the appropriate Q limit.

Additional Information on the Generalized Formulation Structure

The advanced user may want to incorporate additional linear constraints and/or linear costs to the prob-
lem. Sometimes new state variables may need to be defined (in addition to x and y discussed above). And,
sometimes the user may also want to include additional linear costs on some or all of the variables, but in
most cases fmincopf (or mopf) hide these steps from the user and create certain costs and restrictions
automatically. This creates a conflict between ease of use and generality of the software. In this section
we explain the behavior adopted by fmincopf and mopf when the following factors interact:

a) existence of y variables because of piecewise linear costs
b) user-provided linear restrictions

b1) on whatever the existing variables [x; y] are;
b2) with A having more columns than there are elements in [x; y], thus creating extra variables z

and an overall optimization vector [x; y; z].
If the user does not provide any additional linear restrictions via the A, l, u parameters, then internally
there are only x and y-type variables; if there are y-type variables for modeling piecewise linear costs, then
some additional constraints will be constructed to model the cost segments. If there are dispatchable
loads (with either polynomial or piecewise linear costs) then additional constraints will be included to
maintain a constant power factor.
If a user does provide A, l, u parameters to add general linear constraints, then

a) if the number of columns in A is the same as the number of variables in [x; y], then any linear cost
vector needed for modeling of the piecewise linear costs is constructed automatically and the user
is not expected to provide a cost row in A.

b) if the number of columns in A is greater than the number of elements in [x; y], then the user is re-
sponsible to provide
b1) the appropriate linear restrictions on y and the Pg, Qg sections of the x vector to model each

of the segments of the piecewise linear costs as described previously; this includes both the
coefficient matrix and the left and right hand sides of the restrictions. The function makeAy
can be used for this, but keep in mind that it will return a coefficient matrix that has only as
many columns as elements in [x; y]. It must be padded with enough sparse zero columns on
the right to make it conformable with [x; y; z] if there are any z variables.

b2) the appropriate linear cost in the last row of A and this includes any necessary cost coeffi-
cients on the y section of the cost vector. Note that l and u must still have the same num-
ber of elements as A has rows but the last elements in l and u are meaningless; set them to
(–large, +large).

MATPOWER User’s Manual Version 3.0.0

20

Note that this implies that in order to add linear costs on just the [x; y] variables, at least one dummy z
variable must be created for the interface to provide the user with the opportunity to specify the linear cost
vector.

3.4.3 DC OPF Formulation

The DC optimal power flow problem solved by MATPOWER is similar to the traditional AC OPF for-
mulation described above, but using the DC model of the network, which only includes bus voltage an-
gles and real power injections and flows.

€

min
θ,Pg

fi(Pgi)
i
∑

subject to

€

Bbusθ = Pg −Pd −Pbus,shift −Gsh (active power balance equations)

€

Bfθ ≤ P
max −Pf ,shift (real power flow limit of lines, from end)

€

−Bfθ ≤ P
max +Pf ,shift (real power flow limit of lines, to end)

Pgi
min ≤ Pgi ≤ Pgi

max (active power generation limits)

The voltage angle at the reference bus is also constrained to the specified value. Since all constraints are
linear, the problem is a simple LP or QP problem depending on the form of the cost function.
The current implementation of the DC OPF does not allow additional user-supplied linear constraints
and costs as in the generalized AC OPF formulation described above.

3.5 Unit Decommitment Algorithm
The standard OPF formulation described in the previous section has no mechanism for completely shut-
ting down generators which are very expensive to operate. Instead they are simply dispatched at their
minimum generation limits. MATPOWER includes the capability to run an optimal power flow combined
with a unit decommitment for a single time period, which allows it to shut down these expensive units and
find a least cost commitment and dispatch. To run this for a case30, for example, type:
>> runuopf('case30')

MATPOWER uses an algorithm similar to dynamic programming to handle the decommitment. It pro-
ceeds through a sequence of stages, where stage N has N generators shut down, starting with N = 0.
The algorithm proceeds as follows:
Step 1: Begin at stage zero (N = 0), assuming all generators are on-line with all limits in place.
Step 2: Solve a normal OPF. Save the solution as the current best.
Step 3: Go to the next stage, N = N + 1. Using the best solution from the previous stage as the base

case for this stage, form a candidate list of generators with minimum generation limits binding.
If there are no candidates, skip to step 5.

Step 4: For each generator on the candidate list, solve an OPF to find the total system cost with this
generator shut down. Replace the current best solution with this one if it has a lower cost.
If any of the candidate solutions produced an improvement, return to step 3.

Step 5: Return the current best solution as the final solution.

MATPOWER User’s Manual Version 3.0.0

21

3.6 MATPOWER Options
MATPOWER uses an options vector to control the many options available. It is similar to the options
vector produced by the foptions function in early versions of MATLAB’s Optimization Toolbox. The
primary difference is that modifications can be made by option name, as opposed to having to remember
the index of each option. The default MATPOWER options vector is obtained by calling mpoption with
no arguments. So, typing:
>> runopf('case30', mpoption)

is another way to run the OPF solver with the all of the default options.
The MATPOWER options vector controls the following:
• power flow algorithm
• power flow termination criterion
• OPF algorithm
• OPF default algorithms for different cost models
• OPF cost conversion parameters
• OPF termination criterion
• verbose level
• printing of results
The details are given below:

>> help mpoption
 MPOPTION Used to set and retrieve a MATPOWER options vector.

 opt = mpoption
 returns the default options vector

 opt = mpoption(name1, value1, name2, value2, ...)
 returns the default options vector with new values for up to 7
 options, name# is the name of an option, and value# is the new
 value. Example: options = mpoption('PF_ALG', 2, 'PF_TOL', 1e-4)

 opt = mpoption(opt, name1, value1, name2, value2, ...)
 same as above except it uses the options vector opt as a base
 instead of the default options vector.

 The currently defined options are as follows:

 idx - NAME, default description [options]
 --- ------------- -------------------------------------
 power flow options
 1 - PF_ALG, 1 power flow algorithm
 [1 - Newton's method]
 [2 - Fast-Decoupled (XB version)]
 [3 - Fast-Decoupled (BX version)]
 [4 - Gauss Seidel]
 2 - PF_TOL, 1e-8 termination tolerance on per unit
 P & Q mismatch
 3 - PF_MAX_IT, 10 maximum number of iterations for
 Newton's method

MATPOWER User’s Manual Version 3.0.0

22

 4 - PF_MAX_IT_FD, 30 maximum number of iterations for
 fast decoupled method
 5 - PF_MAX_IT_GS, 1000 maximum number of iterations for
 Gauss-Seidel method
 6 - ENFORCE_Q_LIMS, 0 enforce gen reactive power limits,
 at expense of |V| [0 or 1]
 10 - PF_DC, 0 use DC power flow formulation, for
 power flow and OPF
 [0 - use AC formulation & corresponding algorithm opts]
 [1 - use DC formulation, ignore AC algorithm options]
 OPF options
 11 - OPF_ALG, 0 algorithm to use for OPF
 [0 - choose best default solver available in the]
 [following order, 500, 520 then 100/200]
 [Otherwise the first digit specifies the problem]
 [formulation and the second specifies the solver,]
 [as follows, (see the User's Manual for more details)]
 [100 - standard formulation (old), constr]
 [120 - standard formulation (old), dense LP]
 [140 - standard formulation (old), sparse LP (relaxed)]
 [160 - standard formulation (old), sparse LP (full)]
 [200 - CCV formulation (old), constr]
 [220 - CCV formulation (old), dense LP]
 [240 - CCV formulation (old), sparse LP (relaxed)]
 [260 - CCV formulation (old), sparse LP (full)]
 [500 - generalized formulation, MINOS]
 [520 - generalized formulation, fmincon]
 [See the User's Manual for details on the formulations.]
 12 - OPF_ALG_POLY, 100 default OPF algorithm for use with
 polynomial cost functions
 (used only if no solver available
 for generalized formulation)
 13 - OPF_ALG_PWL, 200 default OPF algorithm for use with
 piece-wise linear cost functions
 (used only if no solver available
 for generalized formulation)
 14 - OPF_POLY2PWL_PTS, 10 number of evaluation points to use
 when converting from polynomial to
 piece-wise linear costs
 16 - OPF_VIOLATION, 5e-6 constraint violation tolerance
 17 - CONSTR_TOL_X, 1e-4 termination tol on x for copf & fmincopf
 18 - CONSTR_TOL_F, 1e-4 termination tol on F for copf & fmincopf
 19 - CONSTR_MAX_IT, 0 max number of iterations for copf & fmincopf
 [0 => 2*nb + 150]
 20 - LPC_TOL_GRAD, 3e-3 termination tolerance on gradient for lpopf
 21 - LPC_TOL_X, 1e-4 termination tolerance on x (min step size)
 for lpopf
 22 - LPC_MAX_IT, 400 maximum number of iterations for lpopf
 23 - LPC_MAX_RESTART, 5 maximum number of restarts for lpopf
 24 - OPF_P_LINE_LIM, 0 use active power instead of apparent power
 for line flow limits [0 or 1]

MATPOWER User’s Manual Version 3.0.0

23

 output options
 31 - VERBOSE, 1 amount of progress info printed
 [0 - print no progress info]
 [1 - print a little progress info]
 [2 - print a lot of progress info]
 [3 - print all progress info]
 32 - OUT_ALL, -1 controls printing of results
 [-1 - individual flags control what prints]
 [0 - don't print anything]
 [(overrides individual flags, except OUT_RAW)]
 [1 - print everything]
 [(overrides individual flags, except OUT_RAW)]
 33 - OUT_SYS_SUM, 1 print system summary [0 or 1]
 34 - OUT_AREA_SUM, 0 print area summaries [0 or 1]
 35 - OUT_BUS, 1 print bus detail [0 or 1]
 36 - OUT_BRANCH, 1 print branch detail [0 or 1]
 37 - OUT_GEN, 0 print generator detail [0 or 1]
 (OUT_BUS also includes gen info)
 38 - OUT_ALL_LIM, -1 control constraint info output
 [-1 - individual flags control what constraint info prints]
 [0 - no constraint info (overrides individual flags)]
 [1 - binding constraint info (overrides individual flags)]
 [2 - all constraint info (overrides individual flags)]
 39 - OUT_V_LIM, 1 control output of voltage limit info
 [0 - don't print]
 [1 - print binding constraints only]
 [2 - print all constraints]
 [(same options for OUT_LINE_LIM, OUT_PG_LIM, OUT_QG_LIM)]
 40 - OUT_LINE_LIM, 1 control output of line limit info
 41 - OUT_PG_LIM, 1 control output of gen P limit info
 42 - OUT_QG_LIM, 1 control output of gen Q limit info
 43 - OUT_RAW, 0 print raw data for Perl database
 interface code [0 or 1]
 other options
 51 - SPARSE_QP, 1 pass sparse matrices to QP and LP
 solvers if possible [0 or 1]

MATPOWER User’s Manual Version 3.0.0

24

 MINOPF options
 61 - MNS_FEASTOL, 0 (1E-3) primal feasibility tolerance,
 set to value of OPF_VIOLATION by default
 62 - MNS_ROWTOL, 0 (1E-3) row tolerance
 set to value of OPF_VIOLATION by default
 63 - MNS_XTOL, 0 (1E-3) x tolerance
 set to value of CONSTR_TOL_X by default
 64 - MNS_MAJDAMP, 0 (0.5) major damping parameter
 65 - MNS_MINDAMP, 0 (2.0) minor damping parameter
 66 - MNS_PENALTY_PARM, 0 (1.0) penalty parameter
 67 - MNS_MAJOR_IT, 0 (200) major iterations
 68 - MNS_MINOR_IT, 0 (2500) minor iterations
 69 - MNS_MAX_IT, 0 (2500) iterations limit
 70 - MNS_VERBOSITY, -1
 [-1 - controlled by VERBOSE flag (0 or 1 below)]
 [0 - print nothing]
 [1 - print only termination status message]
 [2 - print termination status and screen progress]
 [3 - print screen progress, report file (usually fort.9)]
 71 - MNS_CORE, 1200 * nb + 5000
 72 - MNS_SUPBASIC_LIM, 0 (2*ng) superbasics limit
 73 - MNS_MULT_PRICE, 0 (30) multiple price

A typical usage of the options vector might be as follows:
Get the default options vector:
>> opt = mpoption;

Use the fast-decoupled method to solve power flow:
>> opt = mpoption(opt, 'PF_ALG', 2);

Display only system summary and generator info:
>> opt = mpoption(opt, 'OUT_BUS', 0, 'OUT_BRANCH', 0, 'OUT_GEN', 1);

Show all progress info:
>> opt = mpoption(opt, 'VERBOSE', 3);

Now, run a bunch of power flows using these settings:
>> runpf('case57', opt)
>> runpf('case118', opt)
>> runpf('case300', opt)

MATPOWER User’s Manual Version 3.0.0

25

3.7 Summary of the Files
Documentation files:

README basic intro to MATPOWER
README.txt basic intro to MATPOWER, with DOS line endings (for Windows)
docs/CHANGES modification history of MATPOWER
docs/CHANGES.txt modification history of MATPOWER, with DOS line endings
docs/manual.pdf PDF version of the MATPOWER User’s Manual
(see also caseformat.m & genform.m below)

Top-level programs:
cdf2matp.m converts data from IEEE CDF to MATPOWER format
runcomp.m runs 2 OPFs and compares results
rundcopf.m runs a DC optimal power flow
rundcpf.m runs a DC power flow
runduopf.m runs a DC OPF with unit decommitment
runopf.m runs an optimal power flow
runpf.m runs a power flow
runuopf.m runs an OPF with unit decommitment
(see also opf.m, copf.m, fmincopf.m, lpopf.m below which can also be used as top-level pro-

grams)

Input data files:
caseformat.m documentation for input data file format
case_ieee30.m IEEE 30 bus system
case118.m IEEE 118 bus system
case14.m IEEE 14 bus system
case30.m modified IEEE 30 bus system
case300.m IEEE 300 bus system
case30pwl.m case30.m with piecewise linear costs
case30Q.m case30.m with reactive power costs
case39.m 39 bus system
case4gs.m 4 bus system from Grainger & Stevenson
case57.m IEEE 57 bus system
case6ww.m 6 bus system from Wood & Wollenberg
case9.m 3 generator, 9 bus system (default case file)
case9Q.m case9.m with reactive power costs

MATPOWER User’s Manual Version 3.0.0

26

Common source files and utility functions used by multiple programs:
bustypes.m creates vectors of bus indices for ref bus, PV buses, PQ buses
compare.m prints summary of differences between 2 solved cases
dAbr_dV.m computes partial derivatives of branch apparent power flows wrt. voltage,

used by OPF
dSbr_dV.m computes partial derivatives of branch complex power flows wrt. voltage,

used by OPF & state estimator
dSbus_dV.m computes partial derivatives of bus complex power injections wrt. voltage,

used by OPF, Newton PF, state estimator
ext2int.m converts data matrices from external to internal bus numbering
have_fcn.m checks for availability of optional functionality
idx_area.m named column index definitions for areas matrix
idx_brch.m named column index definitions for branch matrix
idx_bus.m named column index definitions for bus matrix
idx_cost.m named column index definitions for gencost matrix
idx_gen.m named column index definitions for gen matrix
int2ext.m converts data matrices from internal to external bus numbering
isload.m checks if generators are actually dispatchable loads
loadcase.m loads data from a case file or struct into data matrices
makeB.m forms B matrix used by fast decoupled power flow
makeBdc.m forms B matrix used by DC PF and DC OPF
makeSbus.m forms bus complex power injections from specified generation and load

injections
makeYbus.m forms complex bus admittance matrix
mp_lp.m solves an LP problem with best solver available
mp_qp.m solves a QP problem with best solver available
mpver.m prints MATPOWER version information
printpf.m pretty prints solved PF or OPF case
savecase.m saves data matrices to a case file
mpoption.m set MATPOWER options

Power Flow (PF):
dcpf.m implements DC power flow solver
fdpf.m implements fast decouple power flow solver
gausspf.m implements Gauss-Seidel power flow solver
newtonpf.m implements Newton power flow solver
pfsoln.m updates data matrices with PF solution

MATPOWER User’s Manual Version 3.0.0

27

Optimal Power Flow (OPF):
common files shared by multiple OPF solvers
opf_form.m returns code for formulation given OPF algorithm code
opf_slvr.m returns code for solver given OPF algorithm code
opf.m top-level OPF solver routine
poly2pwl.m creates piecewise linear approximation to polynomial cost function
pqcost.m splits gencost into real and reactive power costs
totcost.m computes total cost for given dispatch

files used only by DC OPF
dcopf.m implements DC optimal power flow

files used only for traditional OPF formulation (constr- and LP-based)
fg_names.m returns names of function and gradient evaluators for given algorithm
fun_ccv.m computes objective function and constraints for CCV formulation
fun_std.m computes objective function and constraints for standard formulation
grad_ccv.m computes gradients of obj fcn & constraints for CCV formulation
grad_std.m computes gradients of obj fcn & constraints for standard formulation
opfsoln.m updates data matrices with OPF solution

files used only by constr-based OPF
copf.m implements constr-based OPF solver

files used only by LP-based OPF
lpopf.m implements LP-based OPF solver
LPconstr.m solves a non-linear optimization via sequential linear programming
LPeqslvr.m runs Newton power flow
LPrelax.m solves LP problem with constraint relaxation
LPsetup.m solves LP problem using specified method

files used only for generalized OPF formulation (fmincon- and MINOS-based)
genform.m documentation for generalized OPF formulation
makeAy.m forms A matrix and b vector for generalized OPF formulation

files used only by fmincon-based OPF
consfmin.m computes value and gradient of constraints
costfmin.m computes value and gradient of objective function
fmincopf.m implements fmincon-based OPF solver

files used only for OPF with unit decommitment
fairmax.m same as MATLAB’s built-in max(), except breaks ties randomly
uopf.m implements unit decommitment for OPF

MATPOWER User’s Manual Version 3.0.0

28

Extras: (in extras subdirectory)
auction market software (in smartmarket subdirectory)
auction.m clears set of bids and offers based on pricing rules and OPF result
case2off.m creates set of price/quantity bids/offers given gen and gencost matrices
idx_disp.m named column index definitions for dispatch matrix
off2case.m updates gen and gencost matrices based on quantity/price bids/offers
printmkt.m prints the market output
runmkt.m top-level program runs an OPF-based auction
SM_CHANGES modification history of the smartmarket software
smartmkt.m implements the smartmarket solver

unfinished state estimator (in state_estimator subdirectory)
runse.m runs a state estimator
state_est.m implements a state estimator

Tests: (in t subdirectory)
soln9_dcopf.mat data used for tests
soln9_dcpf.mat data used for tests
soln9_opf.mat data used for tests
soln9_opf_Plim.mat data used for tests
soln9_pf.mat data used for tests
t_auction.m tests auction.m in extras/smartmarket
t_auction_case.m test case for t_auction.m
t_auction_fmincopf.m fmincon-based tests of auction.m in extras/smartmarket
t_begin.m starts a set of tests
t_case9_opf.m case file for OPF tests
t_case9_pf.m case file for power flow tests
t_end.m finishes a set of tests and prints statistics
t_is.m tests if two matrices are identical to some tolerance
t_jacobian.m does numerical test of partial derivatives
t_loadcase.m tests load_case.m
t_ok.m tests if an expression is true
t_opf.m tests OPF solvers
t_pf.m tests PF solvers
t_run_tests.m framework for running a series of tests
t_skip.m skips a specified number of tests
test_matpower.m runs all available MATPOWER tests

MATPOWER User’s Manual Version 3.0.0

29

4 Acknowledgments
The authors would like to acknowledge contributions from several people. Thanks to Chris DeMarco,
one of our PSERC associates at the University of Wisconsin, for the technique for building the Jacobian
matrix. Our appreciation to Bruce Wollenberg for all of his suggestions for improvements to version 1.
The enhanced output functionality in version 2.0 are primarily due to his input. Thanks also to Andrew
Ward for code which helped us verify and test the ability of the OPF to optimize reactive power costs.
Thanks to Alberto Borghetti for contributing code for the Gauss-Seidel power flow solver. Thanks also
to many others who have contributed code, bug reports and suggestions over the years. Last but not least,
we would like to acknowledge the input of Bob Thomas throughout the development of MATPOWER
here at PSERC Cornell.

5 References
1. R. van Amerongen, “A General-Purpose Version of the Fast Decoupled Loadflow”, IEEE Transac-

tions on Power Systems, Vol. 4, No. 2, May 1989, pp. 760-770.
2. O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments in LP-based Optimal Power Flow”,

IEEE Transactions on Power Systems, Vol. 5, No. 3, Aug. 1990, pp. 697-711.
3. R. Fletcher, Practical Methods of Optimization, 2n d Edition, John Wiley & Sons, p. 96.
4. P. E. Gill, W. Murry, M. H. Wright, Practical Optimization, Academic Press, London, 1981.
5. A. F. Glimm and G. W. Stagg, “Automatic calculation of load flows”, AIEE Transactions (Power

Apparatus and Systems), vol. 76, pp. 817-828, Oct. 1957.
6. A. Grace, Optimization Toolbox, The MathWorks, Inc., Natick, MA, 1995.
7. C. Li, R. B. Johnson, A. J. Svoboda, “A New Unit Commitment Method”, IEEE Transactions on

Power Systems, Vol. 12, No. 1, Feb. 1997, pp. 113-119.
8. C. Mészáros, “The efficient implementation of interior point methods for linear programming and

their applications”, Ph.D. Thesis, Eötvös Loránd University of Sciences, 1996.
9. B. Stott, “Review of Load-Flow Calculation Methods”, Proceedings of the IEEE, Vol. 62, No. 7,

July 1974, pp. 916-929.
10. B. Stott and O. Alsac, “Fast decoupled load flow”, IEEE Transactions on Power Apparatus and

Systems, Vol. PAS-93, June 1974, pp. 859-869.
11. B. Stott, J. L. Marino, O. Alsac, “Review of Linear Programming Applied to Power System Re-

scheduling”, 1979 PICA, pp. 142-154.
12. W. F. Tinney and C. E. Hart, “Power Flow Solution by Newton’s Method”, IEEE Transactions on

Power Apparatus and Systems, Vol. PAS-86, No. 11, Nov. 1967, pp. 1449-1460.
13. A. J. Wood and B. F. Wollenberg, “Power Generation, Operation, and Control, 2n d Edition, John

Wiley & Sons, p. 108-111.
14. B.A Murtagh andM.A. Saunders, “MINOS 5.5 User’s Guide”, Stanford University Systems Opti-

mization Laboratory Technical Report SOL83-20R.

MATPOWER User’s Manual Version 3.0.0

30

Appendix A: Notes on LP-Solvers for MATLAB

When MATPOWER was initially developed the LP and QP solvers available in MATLAB’s Optimization
Toolbox, lp.m and qp.m, did not exploit sparsity and were therefore very slow for the large sparse prob-
lems typically encountered in power system simulation. Fortunately, there were some third party LP and
QP-solvers for MATLAB with much better performance.
Several LP and QP-solvers were tested for use in the context of an LP-based OPF. Some of them we
were unable to get to compile on our architecture of choice and others proved to be less than robust in an
OPF context.
Here is a list of the solvers we tested at the time:
• bpmpd - QP-solver from http://www.sztaki.hu/~meszaros/bpmpd/

 Please see http://www.pserc.cornell.edu/bpmpd/ for a MATLAB MEX version.
• lp.m - LP-solver included with Optimization Toolbox 1.x and 2.x (from MathWorks)
• lp_solve - LP-solver from ftp://ftp.ics.ele.tue.nl/pub/lp_solve/
• loqo - LP-solver from http://www.princeton.edu/~rvdb/
• sol_qps.m - LP-solver developed at U. of Wisconsin (not publicly available)
Of all of the packages tested, the bpmpd solver, has been the only one which worked reliably for us. It
has proven to be very robust and has exceptional performance.
More information about free optimizers is available in “Decision Tree for Optimization Software”
maintained by Mittenlmonn Hans and P. Spellucci at http://plato.la.asu.edu/guide.html.
Since the initial development of MATPOWER, more recent versions of the MATLAB Optimization Tool-
box have moved to new LP and QP solvers, linprog.m and quadprog.m. The LP solver, base on
LIPSOL, does support sparsity, but is still typically slower than bpmpd. The QP solver does not support
sparsity in general, only for certain restricted special cases.

Appendix B: Additional Notes
• Some versions of MATLAB 5 were slow at selecting rows of a large sparse matrix, but much faster at

transposing and selecting columns.
• fmincon.m seems to compute inaccurate shadow prices for Optimization Toolbox 3.0 and earlier.

MATPOWER User’s Manual Version 3.0.0

31

Appendix C: Auction Code
MATPOWER 3 includes in the extras/smartmarket directory code which implements a “smart mar-
ket” auction clearing mechanism. The purpose of this code is to take a set of offers to sell and bids to
buy and use MATPOWER’s optimal power flow to compute the corresponding allocations and prices. It
has been used extensively by the authors with the optional MINOPF package2 in the context of
POWERWEB3 but has not been widely tested in other contexts. It has evolved over time and includes a
mixture of currently used features and legacy code which we no longer use.
The smart market algorithm consists of the following basic steps:

1. Convert block offers and bids into corresponding generator capacities and costs.
2. Run an optimal power flow with decommitment option (uopf) to find generator allocations and

nodal prices (

€

λP).
3. Convert generator allocations and nodal prices into set of cleared offers and bids.
4. Print results.

For step 1, the offers and bids are supplied as two matrices, q for offer/bid quantities and p for the corre-
sponding offer/bid prices. The element i-th row and j-th column of q and p are the quantity and price, re-
spectively of the j-th block of capacity being offered/bid by the i-th generator. These block offers/bids are
converted to the equivalent piecewise linear generator costs and generator capacity limits by the
off2case function.
Offer blocks must be in non-decreasing order of price and the offer must correspond to a generator with
0 ≤ PMIN < PMAX. A price cap max_p specifies the maximum allowed offer price. Capacity offered above
this price is considered to be withheld from the auction and is not included in the cost function produced.
Bids must be in non-increasing order of price and correspond to a generator with PMIN < PMAX ≤ 0 (see
“Dispatchable loads” on page 18). Bids are not affected by max_p.
The data specified by a MATPOWER case file, with the gen and gencost matrices modified according
the step 1, are then used to run an OPF. A market code parameter mkt is used to specify what type of
OPF to use, where a value of 11x0 indicates AC OPF and 12x0 indicates DC OPF. A decommitment
mechanism is used to shut down generators if doing so results in a smaller overall system cost (see Sec-
tion 3.5 Unit Decommitment Algorithm).
In step 3 the OPF solution is used to determine for each offer/bid block, how much was cleared and at
what price. These values are returned in cq and cp, which have the same dimensions as q and p. The mkt
parameter also specifies the rules to use for determining the cleared prices, where the second digit is the
rule number described below.
There are two basic types of pricing options, discriminative pricing and uniform pricing. The various uni-
form pricing options are best explained in the context of an unconstrained lossless network. In this con-
text, the allocation is identical to what one would get by creating bid and offer stacks and finding the in-
tersection point. The nodal prices (

€

λP) computed by the OPF and returned in bus(:,LAM_P) are all
equal to the price of the marginal block. This is either the last accepted offer (LAO) or the last accepted
bid (LAB), depending which is the marginal block (i.e. the one that is split by intersection of the offer
and bid stacks). There is often a gap between the last accepted bid and the last accepted offer. Since any
price within this range is acceptable to all buyers and sellers, we end up with a number of options for how
to set the price, as listed in the table below.

2 See http://www.pserc.cornell.edu/minopf/
3 See http://www.pserc.cornell.edu/powerweb/

MATPOWER User’s Manual Version 3.0.0

32

Rule
Number Name Description

0 discriminative The price of each cleared offer (bid) is equal to the offered (bid) price.
1 LAO Uniform price equal to the last accepted offer.
2 FRO Uniform price equal to the first rejected offer.
3 LAB Uniform price equal to the last accepted bid.
4 FRB Uniform price equal to the first rejected bid.
5 first price Uniform price equal to the offer/bid price of marginal unit.

6 second price Uniform price equal to min(FRO, LAB) if the marginal unit is an of-
fer, or max(FRB, LAO) if it is a bid.

7 split-the-difference Uniform price equal to the average of the LAO and LAB.
8 dual LAOB Uniform price for sellers equal to LAO, for buyers equal to LAB.

Generalizing to a network with possible losses and congestion results in nodal prices

€

λP which vary ac-
cording to location. These

€

λP values can be used to normalize all bids and offers to a reference location
by adding a locational adjustment. For bids and offers at bus i, the adjustment is

€

λP,ref −λP,i , where

€

λP,ref
is the nodal price at the reference bus. The desired uniform pricing rule can then be applied to the ad-
justed offers and bids to get the appropriate uniform price at the reference bus. This uniform price is then
adjusted for location by subtracting the locational adjustment. The appropriate locationally adjusted uni-
form price is then used for all cleared bids and offers.
There are certain circumstances under which the price of a cleared offer determined by the above proce-
dures can be less than the original offer price, such as when a generator is dispatched at its minimum
generation limit, or greater than the price cap max_p. For this reason all cleared offer prices are clipped to
be greater than or equal to the offer price but less than or equal to max_p. Likewise, cleared bid prices are
less than or equal to both the bid price and max_p.

Handling Supply Shortfall

Initial implementations of the auction software did not include dispatchable or price-sensitive loads, so it
only handled single-sided auctions. In an attempt to handle situations where the offered capacity was in-
sufficient to meet the demand under all of the other constraints, resulting in an infeasible OPF, imports
were introduced. These were simply generators with GEN_STATUS set to –1. If the auction software failed
to find an OPF solution, it would turn on these generators with costs set to $5/MWh above the highest
offer and retry.
This feature still exists but we no longer use it. Instead, for single-sided markets we model an import as a
fixed injection together with an equal sized dispatchable load which is bid in at a high price. Under nor-
mal circumstances, the two cancel each other and have no effect on the solution. Under supply shortage
situations, the dispatchable load is not fully dispatched, resulting in a net injection at the bus, mimicking
an import. When used in conjunction with the LAO pricing rule, the marginal load bid will not set the
price if all offered capacity can be used.

MATPOWER User’s Manual Version 3.0.0

33

Example

Six generators with three blocks of capacity each, offering as follows:

Generator Block 1
MW @ $/MWh

Block 2
MW @ $/MWh

Block 3
MW @ $/MWh

1 12 @ $20 24 @ $50 24 @ $60
2 12 @ $20 24 @ $40 24 @ $70
3 12 @ $20 24 @ $42 24 @ $80
4 12 @ $20 24 @ $44 24 @ $90
5 12 @ $20 24 @ $46 24 @ $75
6 12 @ $20 24 @ $48 24 @ $60

One fixed load of 151.64 MW.
Three dispatchable loads, bidding three blocks each as follows:

Load Block 1
MW @ $/MWh

Block 2
MW @ $/MWh

Block 3
MW @ $/MWh

1 10 @ $100 10 @ $70 10 @ $60
2 10 @ $100 10 @ $50 10 @ $20
3 10 @ $100 10 @ $60 10 @ $50

The case file t/t_auction_case.m, used for this example, is a modified version of the 30-bus system
that has 9 generators, where the last three have negative PMIN to model the dispatchable loads.
To solve this case using an AC optimal power flow and a last accepted offer (LAO) pricing rule, we use a
market code of 1110 and set up the problem as follows:

q = [12 24 24;
12 24 24;
12 24 24;
12 24 24;
12 24 24;
12 24 24;
10 10 10;
10 10 10;
10 10 10];

MATPOWER User’s Manual Version 3.0.0

34

p = [20 50 60;
20 40 70;
20 42 80;
20 44 90;
20 46 75;
20 48 60;
100 70 60;
100 50 20;
100 60 50];

mpopt = mpoption;

[baseMVA, cq, cp, bus, gen, gencost, branch, f, dispatch, success, et] = ...
 runmkt('my_case', q, p, 1110, [], [], [], mpopt);

The resulting cleared offers and bids are:

>> cq

cq =

 12.0000 23.3156 0
 12.0000 24.0000 0
 12.0000 24.0000 0
 12.0000 24.0000 0
 12.0000 24.0000 0
 12.0000 24.0000 0
 10.0000 10.0000 10.0000
 10.0000 0 0
 10.0000 10.0000 0

>> cp

cp =

 50.0000 50.0000 50.0000
 50.2406 50.2406 50.2406
 50.3368 50.3368 50.3368
 51.0242 51.0242 51.0242
 52.1697 52.1697 52.1697
 52.9832 52.9832 52.9832
 51.8207 51.8207 51.8207
 54.0312 54.0312 54.0312
 55.6208 55.6208 55.6208

MATPOWER User’s Manual Version 3.0.0

35

In other words, the generators sold:

Generator Quantity Sold
M W

Selling Price
 $/MWh

1 35.3 $50.00
2 36 $50.24
3 36 $50.34
4 36 $51.02
5 36 $52.17
6 36 $52.98

And the dispatchable loads bought:

Load Quantity Bought
M W

Purchase Price
 $/MWh

1 30.0 $51.82
2 10.0 $54.03
3 20.0 $55.62

