
MATPOWER
A MATLAB™ Power System Simulation Package

Version 2.0
December 24, 1997

User’s Manual

Ray D. Zimmerman Deqiang (David) Gan
rz10@cornell.edu deqiang@ee.cornell.edu

© 1997 Power Systems Engineering Research Center (PSERC)
School of Electrical Engineering, Cornell University, Ithaca, NY 14853

2

Table of Contents

Table of Contents.... .2

1 Introduction...3

2 Getting Started...3

2.1 System Requirements...3
2.2 Installation...3
2.3 Running a Power Flow..4
2.4 Running an Optimal Power Flow..4
2.5 Getting Help..4

3 Technical Reference...5

3.1 Data File Format...5
3.2 Power Flow..6
3.3 Optimal Power Flow...7
3.4 Unit Decommitment Algorithm...10
3.5 MATPOWER Options..11
3.6 Summary of the Files..14

4 Acknowledgments... 15

5 References.. 16

Appendix A: Notes on LP-Solvers for Matlab ... 17
Appendix B: Some General Matlab Performance Notes... 17

3

1 Introduction

What is MATPOWER?

MATPOWER is a package of Matlab m-files for solving power flow and optimal power flow prob-
lems. It is intended as a simulation tool for researchers and educators which will be easy to use
and modify. MATPOWER is designed to give the best performance possible while keeping the code
simple to understand and modify. The MATPOWER home page can be found at:

http://www.pserc.cornell.edu/matpower/matpower.html

Where did it come from?

MATPOWER was developed by Ray Zimmerman and Deqiang Gan of PSERC at Cornell Univer-
sity (http://www.pserc.cornell.edu/) under the direction of Robert Thomas. The initial need for
Matlab based power flow and optimal power flow code was born out of the computational require-
ments of the PowerWeb project (see http://www.pserc.cornell.edu/powerweb/).

Who can use it?

MATPOWER is free. Anyone may use it. Anyone may modify it for their own use as long as the
original copyright notices remain in place. Please don’t distribute modified versions of
MATPOWER without written permission from us.

2 Getting Started

2.1 System Requirements

To use MATPOWER you will need a Mac, UNIX machine, or PC with:

• Matlab 4 or higher (available from The MathWorks)
• Matlab Optimization Toolbox (available from The MathWorks1)

2.2 Installation

Step 1: Go to the MATPOWER home page2 and follow the download instructions.

Step 2: Unpack the archive using the appropriate software for your machine (StuffIt Expander for
Mac, gunzip and tar for UNIX, pkzip, WinZip, etc. for PC).

Step 3: Copy all of the m-files in the MATPOWER distribution to a location in your Matlab path.

1 See http://www.mathworks.com/
2 http://www.pserc.cornell.edu/matpower/matpower.html

4

2.3 Running a Power Flow

To run a simple Newton power flow on the default 9-bus system specified in the file case.m, with
the default algorithm options, at the Matlab prompt, type:

>> runpf

To run a power flow on the 118-bus system whose data is in case118.m, type:

>> runpf('case118')

2.4 Running an Optimal Power Flow

To run an optimal power flow on the default 9-bus system specified in the file case.m, with the
default algorithm options, at the Matlab prompt, type:

>> runopf

To run an optimal power flow on the 30-bus system whose data is in case30.m, type:

>> runopf('case30')

To run an optimal power flow on the same system, but with the option for MATPOWER to shut
down (decommit) expensive generators, type:

>> runuopf('case30')

2.5 Getting Help

As with Matlab’s built-in functions and toolbox routines, you can type help followed by the name
of a command or m-file to get help on that particular function. Nearly all of MATPOWER’s m-files
have such documentation. For example, the help for runopf looks like:

>> help runopf

 RUNOPF Runs an optimal power flow.

 [baseMVA, bus, gen, gencost, branch, f, success, et] = ...
 runopf(casename, mpopt, fname)

 Runs an optimal power flow where casename is the name of the m-file
 (without the .m extension) containing the opf data, and mpopt is a
 MATPOWER options vector (see 'help mpoption' for details). Uses default
 options if 2nd parameter is not given, and 'case' if 1st parameter
 is not given. The results may optionally be printed to a file (appended
 if the file exists) whose name is given in fname (in addition to
 printing to STDOUT). Optionally returns the final values of baseMVA,
 bus, gen, gencost, branch, f, success, and et.

MATPOWER also has many options which control the algorithms and the output. Type:

>> help mpoption

and see Section 3.5 for more information on MATPOWER's options.

5

3 Technical Reference

3.1 Data File Format

The data files used by MATPOWER are simply Matlab m-files which define and return the vari-
ables baseMVA, bus, branch, gen, area, and gencost. The bus, branch, and gen variables are ma-
trices. Each row in the matrix corresponds to a single bus, branch, or generator, respectively. The
columns are similar to the columns in the standard IEEE and PTI formats. The details of the speci-
fication of the MATPOWER case file can be found in the help for case.m:

>> help case

 CASE Defines the power flow data in a format similar to PTI.
 [baseMVA, bus, gen, branch, area, gencost] = case
 The format for the data is similar to PTI format except where noted.
 An item marked with (+) indicates that it is included in this data
 but is not part of the PTI format. An item marked with (-) is one that
 is in the PTI format but is not included here.

 Bus Data Format
 1 bus number (1 to 29997)
 2 bus type
 PQ bus = 1
 PV bus = 2
 reference bus = 3
 isolated bus = 4
 3 Pd, real power demand (MW)
 4 Qd, reactive power demand (MVAR)
 5 Gs, shunt conductance (MW (demanded?) at V = 1.0 p.u.)
 6 Bs, shunt susceptance (MVAR (injected?) at V = 1.0 p.u.)
 7 area number, 1-100
 8 Vm, voltage magnitude (p.u.)
 9 Va, voltage angle (degrees)
 (-) (bus name)
 10 baseKV, base voltage (kV)
 11 zone, loss zone (1-999)
 (+) 12 maxVm, maximum voltage magnitude (p.u.)
 (+) 13 minVm, minimum voltage magnitude (p.u.)

 Generator Data Format
 1 bus number
 (-) (machine identifier, 0-9, A-Z)
 2 Pg, real power output (MW)
 3 Qg, reactive power output (MVAR)
 4 Qmax, maximum reactive power output (MVAR)
 5 Qmin, minimum reactive power output (MVAR)
 6 Vg, voltage magnitude setpoint (p.u.)
 (-) (remote controlled bus index)
 7 mBase, total MVA base of this machine, defaults to baseMVA
 (-) (machine impedance, p.u. on mBase)
 (-) (step up transformer impedance, p.u. on mBase)
 (-) (step up transformer off nominal turns ratio)
 8 status, 1 - machine in service, 0 - machine out of service
 (-) (% of total VARS to come from this gen in order to hold V at
 remote bus controlled by several generators)

6

 9 Pmax, maximum real power output (MW)
 10 Pmin, minimum real power output (MW)

 Branch Data Format
 1 f, from bus number
 2 t, to bus number
 (-) (circuit identifier)
 3 r, resistance (p.u.)
 4 x, reactance (p.u.)
 5 b, total line charging susceptance (p.u.)
 6 rateA, MVA rating A (long term rating)
 7 rateB, MVA rating B (short term rating)
 8 rateC, MVA rating C (emergency rating)
 9 ratio, transformer off nominal turns ratio (= 0 for lines)
 (taps at 'from' bus, impedance at 'to' bus, i.e. ratio = Vf / Vt)
 10 angle, transformer phase shift angle (degrees)
 (-) (Gf, shunt conductance at from bus p.u.)
 (-) (Bf, shunt susceptance at from bus p.u.)
 (-) (Gt, shunt conductance at to bus p.u.)
 (-) (Bt, shunt susceptance at to bus p.u.)
 11 initial branch status, 1 - in service, 0 - out of service

 (+) Area Data Format
 1 i, area number
 2 price_ref_bus, reference bus for that area

 (+) Generator Cost Data Format
 NOTE: If gen has n rows, then the first n rows of gencost contain
 the cost for active power produced by the corresponding generators.
 If gencost has 2*n rows then rows n+1 to 2*n contain the reactive
 power costs in the same format.
 1 model, 1 - piecewise linear, 2 - polynomial
 2 startup, startup cost in US dollars
 3 shutdown, shutdown cost in US dollars
 4 n, number of cost coefficients to follow for polynomial
 (or data points for piecewise linear) total cost function
 5 and following, cost data, piecewise linear data as:
 x0, y0, x1, y1, x2, y2, ...
 and polynomial data as, e.g.:
 c2, c1, c0
 where the polynomial is c0 + c1*P + c2*P^2

3.2 Power Flow

MATPOWER has three power flow solvers. The default power flow solver is based on a standard
Newton’s method [11] using a full Jacobian, updated at each iteration. This method is described in
detail in many textbooks. The other two power flow solvers are variations of the fast-decoupled
method [9]. MATPOWER implements the XB and BX variations as described in [1]. Currently,
MATPOWER’s power flow solvers do not include any transformer tap changing or feasibility
checking capabilities.

Performance of the power flow solvers should be excellent even on very large-scale power sys-
tems, since the algorithms and implementation take advantage of Matlab’s built-in sparse matrix
handling. On a Sun Ultra 2200, MATPOWER solves a 9600-bus test case in about 10 seconds, and
a 38400 bus case in about 50 seconds.

7

3.3 Optimal Power Flow

MATPOWER includes two solvers for the optimal power flow (OPF) problem. The first is based on
the constr function included in Matlab’s Optimization Toolbox, which uses a successive quadratic
programming technique with a quasi-Newton approximation for the Hessian matrix. The second
approach is based on linear programming. It can use the LP solver in the Optimization Toolbox or
other Matlab LP solvers available from third parties.

The performance of MATPOWER’s OPF solvers depends on several factors. First, the constr
function uses an algorithm which does not exploit or preserve sparsity, so it is inherently limited to
small power systems. The LP-based algorithm, on the other hand, does preserve sparsity. How-
ever, the LP-solver included in the Optimization Toolbox does not exploit this sparsity. In fact, the
LP-based method with the default LP solver performs worse than the constr-based method, even
on small systems. Fortunately, there are LP-solvers available from third parties which do exploit
sparsity. In general, these yield much higher performance. One in particular, called bpmpd [7]
(actually a QP-solver), has proven to be robust and efficient.

It should be noted, however, that even with a good LP-solver, MATPOWER’s LP-based OPF
solver, unlike it’s power flow solver, is not suitable for very-large scale problems. Substantial im-
provements in performance may still be possible, though they may require significantly more com-
plicated coding and possibly a custom LP-solver. On a Sun Ultra 2200, the LP-based OPF solver
using bpmpd solves a 30-bus system in under 4 seconds and a 118-bus case in under 25 seconds.

OPF Formulation

The OPF problem solved by MATPOWER is a “smooth” OPF with no discrete variables or con-
trols. The objective function is the total cost of real and/or reactive generation. These costs may be
defined as polynomials or as piecewise-linear functions of generator output. The problem is for-
mulated as follows:

min
Pg ,Qg

f1i (Pgi) + f2i(Qgi)∑
such that …

Pgi − PLi − P(V,θ) = 0 (active power balance equations)

Qgi −QLi − Q(V,θ) = 0 (reactive power balance equations)

˜ S ij
f ≤ Sij

max (apparent power flow limit of lines, from side)

˜ S ij
t ≤ Sij

max (apparent power flow limit of lines, to side)

Vi
min ≤ Vi ≤ Vi

max (bus voltage limits)

Pgi
min ≤ Pgi ≤ Pgi

max (active power generation limits)

Qgi
min ≤ Qgi ≤ Qgi

max (reactive power generation limits)

Here f1i and f2i are the costs of active and reactive power generation, respectively, for generator i
at a given dispatch point. Both f1i and f2i are assumed to be a polynomial or piecewise-linear func-
tions. The problem can be written more compactly in the following form:

8

min
x

f (x)

such that …
g(x) ≤ 0

where f and g are non-linear functions.

Optimization Toolbox Based OPF Solver (constr)

The first of the two OPF solvers in MATPOWER is based on the constr non-linear constrained
optimization function in Matlab’s Optimization Toolbox. The constr function and the algorithms it
uses are covered in the Optimization Toolbox manual [5]. MATPOWER provides constr with two
m-files which it uses during for the optimization. One computes the objective function, f, and the
constraint violations, g, at a given point, x, and the other computes their gradients ∂f ∂x and
∂g ∂x .

MATPOWER has two versions of these m-files. One set is used to solve systems with polynomial
cost functions. In this formulation, the cost functions are included in a straightforward way into the
objective function. The other set is used to solve systems with piecewise-linear costs. Piecewise-
linear cost functions are handled by introducing a cost variable for each piecewise-linear cost func-
tion. The objective function is simply the sum of these cost variables which are then constrained to
lie above each of the linear functions which make up the piecewise-linear cost function. Clearly,
this method works only for convex cost functions. In the MATPOWER documentation this will be
referred to as a constrained cost variable (CCV) formulation.

The algorithm codes 100 and 200, respectively, are used to identify the constr-based solver for
polynomial and piecewise-linear cost functions. If algorithm 200 is chosen for a system with poly-
nomial cost function, the cost function will be approximated by a piecewise-linear function by
evaluating the polynomial at a fixed number of points determined by the options vector (see Sec-
tion 3.5 for more details on the MATPOWER options).

It should be noted that the constr-based method can also benefit from a superior QP-solver such
as bpmpd. See Appendix A for more information on LP and QP-solvers.

LP-Based OPF Solver (LPconstr)

Linear programming based OPF methods are in wide use today in the industry. However, the LP-
based algorithm included in MATPOWER is much simpler than the algorithms used in production-
grade software.

The LP-based methods in MATPOWER use the same problem formulation as the constr-based
methods, including the CCV formulation for the case of piecewise-linear costs. The compact form
of the OPF problem can be rewritten to partition g into equality and inequality constraints, and to
partition the variable x as follows:

min
x

f (x2)

such that …
g1(x1 ,x2) = 0 (equality constraints)

g2(x1 , x2) ≤ 0 (inequality constraints)

9

where x1 contains the system voltage magnitudes and angles, and x2 contains the generator real
and reactive power outputs (and corresponding cost variables for the CCV formulation). This is a
general non-linear programming problem, with the additional assumption that the equality con-
straints can be used to solve for x1, given a value for x2.

The LP-based OPF solver is implemented with a function LPconstr, which is similar to constr in
that it uses the same m-files for computing the objective function, constraints, and their respective
gradients. In addition, a third m-file (lpeqslvr.m) is needed to solve for x1 from the equality con-
straints, given a value for x2. This architecture makes it relatively simple to modify the formulation
of the problem and still be able to use both the constr-based and LP-based solvers.

The algorithm proceeds as follows, where the superscripts denote iteration number:

Step 0: Set iteration counter k ← 0 and choose an appropriate initial value, call it x2
0 , for x2.

Step 1: Solve the equality constraint (power flow) equations g1(x1
k , x2

k) = 0 for x1
k .

Step 2: Linearize the problem around xk, solve the resulting LP for ∆x.

min
∆x

∂f

∂x x = x k

 ⋅∆x

such that …

∂g

∂x x = x k

 ⋅∆x ≤ −g(x k)

−∆ ≤∆ x ≤ ∆

Step 3: Set k ← k +1, update current solution x k = x k −1 + ∆x .

Step 4: If xk meets termination criteria, stop, otherwise go to step 5.

Step 5: Adjust step size limit ∆ based on the trust region algorithm in [3], go to step 1.

The termination criteria is outlined below:
∂L

∂x
=

∂f

∂x
+ λT ⋅

∂g

∂x
≤ tolerance1

g(x) ≤ tolerance2

∆x ≤ tolerance3

Here λ is the vector of Lagrange multipliers of the LP problem. The first condition pertains to the
size of the gradient, the second to the violation of constraints, and the third to the step size. More
detail can be found in [4].

Quite frequently, the value of xk given by step 1 is infeasible and could result in an infeasible LP
problem. In such cases, a slack variable is added for each violated constraint. These slack vari-
ables must be zero at the optimal solution.

The LPconstr function implements the following three methods:

• sparse formulation with full set of inequality constraints
• sparse formulation with relaxed constraints (ICS, Iterative Constraint Search)
• dense formulation with relaxed constraints (ICS) [10]

10

These three methods are specified using algorithm codes 160, 140, and 120, respectively, for sys-
tems with polynomial costs, and 260, 240, and 220, respectively, for systems with piecewise-
linear costs. As with the constr-based method, selecting one of the 2xx algorithms for a system
with polynomial cost will cause the cost to be replaced by a piecewise-linear approximation.

In the dense formulation, some of the variables x1 and the equality constraints g1 are eliminated
from the problem before posing the LP sub-problem. This procedure is outlined below. Suppose the
LP sub-problem is given by:

min cT ⋅∆x

such that …

A ⋅∆x ≤ b

−∆ ≤∆ x ≤ ∆

If this is rewritten as:

min c1
T ⋅∆x1 + c2

T ⋅∆ x2

such that …
A11 ⋅∆x1 + A12 ⋅∆x2 = b1

A21 ⋅∆x1 + A22 ⋅∆x2 ≤ b2

−∆ ≤∆ x ≤ ∆

Where A11 is a square matrix, ∆x1 can be computed as:

∆x1 = A11
−1(b1 − A12∆x2)

Substituting back in to the problem, yields a new LP problem:

min -c1
T A11

−1 A12 + c2
T()⋅∆ x2

such that …
A11 ⋅∆x1 + A12 ⋅∆x2 = b1

A21 ⋅ A11
−1(b1 − A12∆x2) + A22 ⋅∆x2 ≤ b2

−∆1 ≤ A11
−1(b1 − A12∆x2) ≤∆ 1

−∆ 2 ≤ ∆x2 ≤ ∆2

This new LP problem is smaller than the original, but it is no longer sparse.

As mentioned above, to realize the full potential of the LP-based OPF solvers, it will be necessary
to obtain a good LP-solver, such as bpmpd. See Appendix A for more details.

3.4 Unit Decommitment Algorithm

The standard OPF formulation described in the previous section has no mechanism for completely
shutting down generators which are very expensive to operate. Instead they are simply dispatched
at their minimum generation limits. MATPOWER includes a unit decommitment algorithm which

11

allows it to shut down these expensive units. The algorithm is based on a simplified version of the
decommitment technique proposed in [6].

The algorithm proceeds as follows:

Step 0: Assume all generators are on-line with all generator limits in place.

Step 1: Solve a normal OPF.

Step 2: If the OPF converged to a feasible solution and the objective function decreased from the
previous iteration (or if this is the first iteration), go to step 3, otherwise go to step 4.

Step 3: Compute a decommitment index for each generator i as follows:
di = fi(Pi) − λ i ⋅ Pi

where P i is generator i’s dispatch computed by the OPF, f i is the cost of operating at P i,
and λi is the Lagrange multiplier on the real power equality constraint at the bus where
generator i is located. Continue with step 5.

Step 4: Return to the previous commitment and set dk to zero (to eliminate it from consideration).

Step 5: Find the generator k with the smallest decommitment index. If dk is negative, shut down
generator k and return to step 1. If dk is positive, stop.

3.5 MATPOWER Options

MATPOWER uses an options vector to control the many options available. It is similar to the op-
tions vector produced by the foptions function in Matlab’s Optimization Toolbox. The primary
difference is that modifications can be made by option name, as opposed to having to remember the
index of each option. The default MATPOWER options vector is obtained by calling mpoption with
no arguments. So, typing:

>> runopf('case30', mpoption)

is another way to run the OPF solver with the all of the default options.

The MATPOWER options vector controls the following:
• power flow algorithm
• power flow termination criterion
• OPF algorithm
• OPF default algorithms for different cost models
• OPF cost conversion parameters
• OPF termination criterion
• verbose level
• printing of results

The details are given below:

>> help mpoption

 MPOPTION Used to set and retrieve a MATPOWER options vector.

 opt = mpoption
 returns the default options vector

 opt = mpoption(name1, value1, name2, value2, ...)

12

 returns the default options vector with new values for up to 7
 options, name# is the name of an option, and value# is the new
 value. Example: options = mpoption('PF_ALG', 2, 'PF_TOL', 1e-4)

 opt = mpoption(opt, name1, value1, name2, value2, ...)
 same as above except it uses the options vector opt as a base
 instead of the default options vector.

 The currently defined options are as follows:

 idx - NAME, default description [options]
 --- ------------- -------------------------------------
 power flow options
 1 - PF_ALG, 1 power flow algorithm
 [1 - Newton's method]
 [2 - Fast-Decoupled (XB version)]
 [3 - Fast-Decoupled (BX version)]
 2 - PF_TOL, 1e-8 termination tolerance on per unit
 P & Q mismatch
 3 - PF_MAX_IT, 10 maximum number of iterations for
 Newton's method
 4 - PF_MAX_IT_FD, 30 maximum number of iterations for
 fast decoupled method
 OPF options
 11 - OPF_ALG, 0 algorithm to use for OPF
 [(see README for more info on formulations/algorithms)]
 [The algorithm code = F * 100 + S * 20, where ...]
 [F specifies one of the following OPF formulations]
 [1 - standard (polynomial cost in obj fcn)]
 [2 - CCV (constrained cost variables)]
 [S specifies one of the following solvers]
 [0 - 'constr' from Optimization Toolbox]
 [1 - Dense LP-based method]
 [2 - Sparse LP-based method w/relaxed constraints]
 [3 - Sparse LP-based method w/full constraints]
 [This yields the following 9 codes:]
 [0 - choose appropriate default from OPF_ALG_POLY]
 [or OPF_ALG_PWL]
 [100 - standard formulation, constr]
 [120 - standard formulation, dense LP]
 [140 - standard formulation, sparse LP (relaxed)]
 [160 - standard formulation, sparse LP (full)]
 [200 - CCV formulation, constr]
 [220 - CCV formulation, dense LP]
 [240 - CCV formulation, sparse LP (relaxed)]
 [260 - CCV formulation, sparse LP (full)]
 12 - OPF_ALG_POLY, 100 default OPF algorithm for use with
 polynomial cost functions
 13 - OPF_ALG_PWL, 200 default OPF algorithm for use with
 piece-wise linear cost functions
 14 - OPF_POLY2PWL_PTS, 10 number of evaluation points to use
 when converting from polynomial to
 piece-wise linear costs
 15 - OPF_NEQ, 0 number of equality constraints
 (0 => 2*nb, set by program, not a
 user option)
 16 - OPF_VIOLATION, 5e-6 constraint violation tolerance
 17 - CONSTR_TOL_X, 1e-4 termination tol on x for 'constr'

13

 18 - CONSTR_TOL_F, 1e-4 termination tol on F for 'constr'
 19 - CONSTR_MAX_IT, 0 max number of iterations for 'constr'
 [0 => 2*nb + 150]
 20 - LPC_TOL_GRAD, 3e-3 termination tolerance on gradient
 for 'LPconstr'
 21 - LPC_TOL_X, 5e-3 termination tolerance on x (min
 step size) for 'LPconstr'
 22 - LPC_MAX_IT, 1000 maximum number of iterations for
 'LPconstr'
 23 - LPC_MAX_RESTART, 5 maximum number of restarts for
 'LPconstr'
 output options
 31 - VERBOSE, 1 amount of progress info printed
 [0 - print no progress info]
 [1 - print a little progress info]
 [2 - print a lot of progress info]
 [3 - print all progress info]
 32 - OUT_ALL, -1 controls printing of results
 [-1 - individual flags control what prints]
 [0 - don't print anything]
 [(overrides individual flags, except OUT_RAW)]
 [1 - print everything]
 [(overrides individual flags, except OUT_RAW)]
 33 - OUT_SYS_SUM, 1 print system summary [0 or 1]
 34 - OUT_AREA_SUM, 0 print area summaries [0 or 1]
 35 - OUT_BUS, 1 print bus detail [0 or 1]
 36 - OUT_BRANCH, 1 print branch detail [0 or 1]
 37 - OUT_GEN, 0 print generator detail [0 or 1]
 (OUT_BUS also includes gen info)
 38 - OUT_ALL_LIM, -1 control constraint info output
 [-1 - individual flags control what constraint info prints]
 [0 - no constraint info (overrides individual flags)]
 [1 - binding constraint info (overrides individual flags)]
 [2 - all constraint info (overrides individual flags)]
 39 - OUT_V_LIM, 1 control output of voltage limit info
 [0 - don't print]
 [1 - print binding constraints only]
 [2 - print all constraints]
 [(same options for OUT_LINE_LIM, OUT_PG_LIM, OUT_QG_LIM)]
 40 - OUT_LINE_LIM, 1 control output of line limit info
 41 - OUT_PG_LIM, 1 control output of gen P limit info
 42 - OUT_QG_LIM, 1 control output of gen Q limit info
 43 - OUT_RAW, 0 print raw data for Perl database
 interface code [0 or 1]

14

A typical usage of the options vector might be as follows:

Get the default options vector:

>> opt = mpoption;

Use the fast-decoupled method to solve power flow:

>> opt = mpoption(opt, 'PF_ALG', 2);

Display only system summary and generator info:

>> opt = mpoption(opt, 'OUT_BUS', 0, 'OUT_BRANCH', 0, 'OUT_GEN', 1);

Show all progress info:

>> opt = mpoption(opt, 'VERBOSE', 3);

Now, run a bunch of power flows using these settings:

>> runpf('case57', opt)

>> runpf('case118', opt)

>> runpf('case300', opt)

3.6 Summary of the Files

Documentation files:
README - basic intro to MATPOWER
CHANGES - modification history of MATPOWER
manual.pdf - PDF version of the MATPOWER User’s Manual

 (requires Adobe Acrobat Reader)

Input data files:
cdf2matp.m - a stand-alone m-file which reads IEEE CDF formatted

 data and outputs data in MATPOWER's case.m format
case.m - same as case9.m
case9.m - a 3 generator, 9 bus case
case30.m - a 6 generator, 30 bus case
case57.m - IEEE 57-Bus case
case118.m - IEEE 118-Bus case
case300.m - IEEE 300-Bus case
case9Q.m - case9.m, with costs for reactive generation
case30Q.m - case30.m, with costs for reactive generation
case30pwl.m - case30.m with a piece-wise linear cost function

Source files used by all algorithms:
bustypes.m
dSbus_dV.m - computes partial derivatives for Jacobian
ext2int.m
idx_brch.m
idx_bus.m
idx_gen.m
int2ext.m
makeSbus.m
makeYbus.m - builds Ybus matrix
mpoption.m - sets MATPOWER options
printpf.m - prints output

15

Other source files used by PF (Power Flow):
fdpf.m - implements fast decoupled power flow
newtonpf.m - implements Newton’s method power flow
pfsoln.m
runpf.m - main program for running a power flow
makeB.m

Other source files used by OPF (Optimal Power Flow):
dAbr_dV.m - computes partial derivatives of apparent power flows
dSbr_dV.m - computes partial derivatives of complex power flows
fg_names.m
fun_ccv.m - computes obj fcn and constraints for CCV formulation
fun_std.m - computes obj fcn and constraints for standard formulation
grad_ccv.m - computes gradients for standard formulation
grad_std.m - computes gradients for standard formulation
idx_area.m
idx_cost.m
opf.m - implements main OPF routine
opfsoln.m
opf_form.m
opf_slvr.m
poly2pwl.m
pqcost.m
runopf.m - main program for running an optimal power flow
totcost.m - computes cost

The following are used only by the LP-based OPF algorithms:
LPconstr.m
LPeqslvr.m
LPrelax.m
LPsetup.m

Other source files used by UOPF (Unit decommitment/OPF):
(all files from OPF, except runopf.m)
uopf.m - implements decommitment heuristic
runuopf.m - main program for running OPF with decommitment algorithm

Files for use with the bpmpd LP/QP-solver:
bpmpd/lp.m - replacement for Optimization Toolbox lp.m
bpmpd/qp.m - replacement for Optimization Toolbox qp.m (used by constr.m)

4 Acknowledgments

The authors would like to acknowledge contributions from several people. Thanks to Carlos
Murillo-Sánchez for suggesting the CCV formulation for handling piecewise linear costs in the
OPF, for his help on the decommitment algorithm, and for creating the Matlab MEX interface to the
bpmpd LP and QP solver. Thanks to Chris DeMarco, one of our PSERC associates at the Univer-
sity of Wisconsin, for the technique for building the Jacobian matrix. Our appreciation to Bruce
Wollenberg for all of his suggestions for improvements to version 1. The enhanced output function-
ality in version 2.0 are primarily due to his input. Thanks also to Andrew Ward for code which
helped us verify and test the ability of the OPF to optimize reactive power costs. Last but not
least, we’d like to acknowledge the input of Bob Thomas throughout the of development of
MATPOWER here at PSERC Cornell.

16

5 References

1. R. van Amerongen, “A General-Purpose Version of the Fast Decoupled Loadflow”, IEEE
Transactions on Power Systems, Vol. 4, No. 2, May 1989, pp. 760-770.

2. O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments in LP-based Optimal Power
Flow”, IEEE Transactions on Power Systems, Vol. 5, No. 3, Aug. 1990, pp. 697-711.

3. R. Fletcher, Practical Methods of Optimization, 2nd Edition, John Wiley & Sons, p. 96.

4. P. E. Gill, W. Murry, M. H. Wright, Practical Optimization, Academic Press, London, 1981.

5. A. Grace, Optimization Toolbox, The MathWorks, Inc., Natick, MA, 1995.

6. C. Li, R. B. Johnson, A. J. Svoboda, “A New Unit Commitment Method”, IEEE Transactions
on Power Systems, Vol. 12, No. 1, Feb. 1997, pp. 113-119.

7. C. Mészáros, “The efficient implementation of interior point methods for linear programming
and their applications”, Ph.D. Thesis, Eötvös Loránd University of Sciences, 1996.

8. B. Stott, “Review of Load-Flow Calculation Methods”, Proceedings of the IEEE, Vol. 62,
No. 7, July 1974, pp. 916-929.

9. B. Stott and O. Alsac, “Fast decoupled load flow”, IEEE Transactions on Power Apparatus
and Systems, Vol. PAS-93, June 1974, pp. 859-869.

10. B. Stott, J. L. Marino, O. Alsac, “Review of Linear Programming Applied to Power System Re-
scheduling”, 1979 PICA, pp. 142-154.

11. W. F. Tinney and C. E. Hart, “Power Flow Solution by Newton’s Method”, IEEE Transac-
tions on Power Apparatus and Systems, Vol. PAS-86, No. 11, Nov. 1967, pp. 1449-1460.

17

Appendix A: Notes on LP-Solvers for Matlab

The MATPOWER distribution does not include an LP-solver, however, the Matlab Optimization
Toolbox does include and LP-solver, lp.m, which is based on it’s QP-solver, qp.m. For large
sparse problems, these routines are very slow. Fortunately, there are some third party LP and
QP-solvers for MATLAB with much better performance.

Several LP and QP-solvers have been tested for use in the context of an LP-based OPF. Some of
them we were unable to get to compile on our architecture of choice (Sun Ultra running Solaris
2.5.1) and others proved to be less than robust in an OPF context.

Here is a list of the solvers we’ve attempted to use:

• bpmpd - QP-solver from http://www.sztaki.hu/~meszaros/bpmpd/ ($100)
 (Matlab MEX interface by Carlos Murillo <cem14@cornell.edu>)

• lp.m - LP-solver included with Optimization Toolbox (from MathWorks)

• lp_solve - LP-solver from ftp://ftp.ics.ele.tue.nl/pub/lp_solve/ (free)

• loqo - LP-solver from http://www.princeton.edu/~rvdb/ (free)

• sol_qps.m - LP-solver developed at U. of Wisconsin, not publicly available)

Of all of the packages tested, the bpmpd solver, has been the only one which worked reliably for
us. It has proven to be very robust and has exceptional performance. The distribution includes two
files lp.m and qp.m in the bpmpd directory. If bpmpd is installed and these two files are included in
your Matlab path before the Optimization Toolbox routines, they will be used in place of the lp.m
and qp.m in the Toolbox3.

More information about free optimizers is available in "Decision Tree for Optimization Software"
maintained by Mittenlmonn Hans and P. Spellucci at http://plato.la.asu.edu/guide.html.

Appendix B: Some General Matlab Performance Notes

The performance bottlenecks in Matlab are different for Matlab 4 and Matlab 5. Here are two ob-
servations from our testing:

• Matlab 4 is slow at executing case.m for large files, Matlab 5 is not.
• Matlab 5 is slow at selecting rows of a large sparse matrix, Matlab 4 is not.

3 Note when using constr in Matlab 5, it doesn’t seem to find the bpmpd replacement for qp.m , although this seems
to work fine under Matlab 4.

