
MATPOWER’s Extensible Optimal Power Flow
Architecture

Ray Zimmerman, Cornell University
Carlos Murillo-Sánchez, Universidad Autonoma de Manizales
Robert J. Thomas, Cornell University

IEEE PES General Meeting 2009
July 30, 2009
Calgary, Alberta, Canada

PSERC

Outline

• MATPOWER Overview

• Extensible OPF Formulation

• Standard Extensions

• Software Architecture

• Example: Adding Reserves

Outline

• MATPOWER Overview

‣ What does MATPOWER do?

‣ MATPOWER History

‣ MATPOWER Package

• Extensible OPF Formulation

• Standard Extensions

• Software Architecture

• Example: Adding Reserves

What does MATPOWER do?

• DC power flow

• AC power flow

‣ Newton

‣ Gauss-Seidel

‣ Fast decoupled

• functions to compute ...

‣ derivatives of power flow equations

‣ generation costs

‣ linear shift factors (PTDFs, LODFs)

• DC optimal power flow (OPF)

‣ BPMPD (MEX)

‣ Primal-Dual Interior Point Method
(PDIPM)

• AC optimal power flow (OPF)

‣ Primal-Dual Interior Point Method
(PDIPM) (pure Matlab & MEX)

‣ MINOS (MEX)

‣ successive LP’s (BPMPD MEX)

‣ Optimization Toolbox (fmincon, constr)

MATPOWER History

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1st work with Matlab power flow code for PowerWeb
- based on code from Joe Chow & Chris DeMarco

1st PF and OPF code of my own
- based on Opt Tbx, constr()

1st public MATPOWER release
- not widely publicized
- PWL costs

MATPOWER 1.0
- in-house successive LP-based OPF

MATPOWER 2.0
- fast decoupled PF
- successive LP-based OPF
- options vector
- User’s Manual

MATPOWER 3.0
- MINOS-based OPF (gen. form.)
- fmincon-based OPF
- DC PF & OPF
- multiple gens/bus
- Gauss-Seidel PF
- improved DP de-commitment
- automated tests
- separate disp. load output section
- option for active power line lims
- option to enforce Qg lims in PF

MATPOWER 3.2
- version 2 case format
- gen capability curves
- branch angle diff lims
- PTDFs
- TSPOPF

MATPOWER 4.0
- refactored OPF (all using gen. form.)
- pure-Matlab PDIPM solver
- OPF with reserves
- userfcn callbacks
- multiple solvers for DC OPF
- LODFs
- support for interior point fmincon

MATPOWER Package

• Open source Matlab code available at: http://www.pserc.cornell.edu/matpower/

• No GUI (graphical user interface)

• Set of functions you can run from Matlab command line or include in your own
programs

• Example:

>> result = runopf(‘case300’);

or

>> mpc = loadcase(‘case300’);
>> mpc.bus = scale_load(1.1, mpc.bus);
>> result = runopf(mpc);

• Primary focus on research and education applications

http://www.pserc.cornell.edu/matpower/
http://www.pserc.cornell.edu/matpower/

Outline

• MATPOWER Overview

• Extensible OPF Formulation

‣ Standard Formulation

‣ Generalized Formulation

‣ User-Defined Costs

‣ User-Defined Constraints

• Standard Extensions

• Software Architecture

• Example: Adding Reserves

Standard OPF Formulation

min
x

f(x)

subject to
g(x) = 0
h(x) ≤ 0

xmin ≤ x ≤ xmax

Standard OPF Formulation

min
Θ,V,P,Q

ng∑

i=1

[
f i

P (pi) + f i
Q(qi)

]

subject to
gP (Θ, V, P) = 0
gQ(Θ, V, Q) = 0
hf (Θ, V) ≤ 0
ht(Θ, V) ≤ 0

θref ≤ θi ≤ θref , i = iref

vmin
i ≤ vi ≤ vmax

i , i = 1 . . . nb

pmin
i ≤ pi ≤ pmax

i , i = 1 . . . ng

qmin
i ≤ qi ≤ qmax

i , i = 1 . . . ng

Generalized Formulation

min
x,z

f(x) + fu(x, z)

subject to
g(x) = 0
h(x) ≤ 0

xmin ≤ x ≤ xmax

l ≤ A

[
x
z

]
≤ u

zmin ≤ z ≤ zmax

additional variables

Generalized Formulation

min
x,z

f(x) + fu(x, z)

subject to
g(x) = 0
h(x) ≤ 0

xmin ≤ x ≤ xmax

l ≤ A

[
x
z

]
≤ u

zmin ≤ z ≤ zmax

additional costs

additional variables

Generalized Formulation

min
x,z

f(x) + fu(x, z)

subject to
g(x) = 0
h(x) ≤ 0

xmin ≤ x ≤ xmax

l ≤ A

[
x
z

]
≤ u

zmin ≤ z ≤ zmax

additional constraints

additional costs

additional variables

Generalized Formulation

min
x,z

f(x) + fu(x, z)

subject to
g(x) = 0
h(x) ≤ 0

xmin ≤ x ≤ xmax

l ≤ A

[
x
z

]
≤ u

zmin ≤ z ≤ zmax

wi

mi

ri

r̂i

ki ki

User-Defined Costs

fu(x, z) =
1
2
wTHw + CTw r = N

[
x
z

]

u = r − r̂ wi =

mifdi(ui + ki), ui < −ki

0, −ki ≤ ui ≤ ki

mifdi(ui − ki), ui > ki

fdi(α) =
{

α, if di = 1
α2, if di = 2

wi

ri

r̂i

kiki

User-Defined Constraints

• additional linear restrictions on all optimization variables

• inequality constraints

• equality constraints if

l ≤ A

[
x
z

]
≤ u

l = u

Outline

• MATPOWER Overview

• Extensible OPF Formulation

• Standard Extensions

‣ piece-wise linear costs

‣ dispatchable (price sensitive) loads

‣ generator reactive capability constraints

‣ branch angle difference limits

• Software Architecture

• Example: Adding Reserves

Piece-wise Linear Generation Costs

• given the sequence of points

where is the slope of
segment

• add a new variable and, for
each segment, a new linear
constraint on

• use in place of in the
cost functionx

x0 x1 x2

c

c0

c1

c2

y

cn

xn

c(x) =

m1(x− x1) + c1, x ≤ x1

m2(x− x2) + c2, x1 < x ≤ x2
...

...
mn(x− xn) + cn, xn−1 < x

(xj , cj), j = 0 . . . n

mj

j

mj =
cj − cj−1

xj − xj−1
, j = 1 . . . n

y ≥ mj(x− xj) + cj , j = 1 . . . n

y

c(x)y

y

Dispatchable (price sensitive) Loads

• modeled as “negative generator”

• with an additional constant power factor constraint

MW

λ2

p2

λ1

p1

p1p2

$

p (injection)

c (total cost)
λ (marginal benefit)

$/MW

MW

λ1

λ2

p1

p2

p (load)

Generator Reactive Capability Constraints

• Instead of simple box constraints ...

qmax
1

qmax
2

qmin
2

qmin
1

qmin

qmax

pmaxpminp1 p2

q

p

Generator Reactive Capability Constraints

• Instead of simple box constraints ...

qmax
1

qmax
2

qmin
2

qmin
1

qmin

qmax

pmaxpminp1 p2

q

p

Outline

• MATPOWER Overview

• Extensible OPF Formulation

• Standard Extensions

• Software Architecture

‣ Overview of Execution - Callbacks

‣ Adding Variables

‣ Adding Constraints

• Example: Adding Reserves

• load data

• convert to internal indexing

• set up problem formulation

• run optimization

• convert results back to external indexing

• print results (optional)

• save results (optional)

Overview of Execution

Overview of Execution – Callbacks

• load data

• convert to internal indexing

• set up problem formulation

• run optimization

• convert results back to external indexing

• print results (optional)

• save results (optional)

Overview of Execution

Overview of Execution – Callbacks

• load data

• convert to internal indexing

• set up problem formulation

• run optimization

• convert results back to external indexing

• print results (optional)

• save results (optional)

Overview of Execution

Modifying the Formulation

• Option 1 – externally supply
complete constraint matrix A,
cost coeff matrix N, etc.
(taking into account internal
conversions)

• Option 2 – modify formulation
directly in a callback function

Software Architecture - Variables

• Utilizes an “OPF-Model” object (OM) to
manage variable and constraint indexing

• Variables are added in named blocks, with
dimension, initial value and bounds, e.g.

• Portions of optimization variable x or limit
shadow prices can be accessed by name,
w/o need to keep track of explicit indexing

name description

Va
Vm
Pg
Qg
y
z

bus voltage angles
bus voltage magnitudes
generator real power injections
generator reactive power injections
CCV helper variables for pwl costs
other user defined variables

AC OPF DC OPF

x =

x =om = add_vars(om, 'Pg', ng, Pg0, Pmin, Pmax);

Va

Qg

y

Vm

Pg

z

Va

y

Pg

z

Software Architecture - Constraints

• Constraints added in named blocks, with A, l, u and block column names,
e.g.

om = add_constraints(om, 'Res', Ar, lr, ur, {'Pg', 'R'});

lr ≤
[

A1 A2

] [
Pg

R

]
≤ ur

lr ≤ Ar

[
Pg

R

]
≤ ur

l ≤ A

[
x
z

]
≤ u

• Constraint multipliers can be
accessed by name (e.g , 'Res')
w/o need to keep track of explicit
indexing

Va

A = 0 A10 00 A2

A = 0 A1 0 A2

Ar = A1 A2

Va PgVm yQg R

Pg y R

AC OPF

DC OPF

Outline

• MATPOWER Overview

• Extensible OPF Formulation

• Standard Extensions

• Software Architecture

• Example: Adding Reserves

Example – Adding Reserves

• Jointly optimize the allocation of both energy and reserves

• Reserve requirements are set of fixed zonal quantities

• New reserve variable:

• Additional reserve cost:

• Reserve constraints:

0 ≤ ri ≤ rmax
i

fu(x, z) =
∑

i∈U

ciri

pi + ri ≤ pmax
i , ∀i ∈ U

∑

i∈Zk

ri ≥ Rk, ∀k

Adding Reserves – Code

Ar = [I I];
om = add_vars(om, 'R', ng, [], Rmin, Rmax);
om = add_constraints(om, 'Pg_plus_R', Ar, [], Pmax, {'Pg', 'R'});
om = add_constraints(om, 'Rreq', Az, Rreq, [], {'R'});
om = add_costs(om, 'Rcost', struct('N',I,'Cw',Rcost), {'R'});

name description

om
ng
R

Rmin
Rmax
Pmax
I
Az

Rreq
Rcost

OPF model object, already includes standard OPF setup
number of generators
name for new reserve variable vector
lower bound on R, all zeros
upper bound on R, based on ramp rates
capacity of generators
identity matrix (ng x ng)
zone definitions, Az(i,j) = 1, iff gen j lies in zone i
vector of reserve requirements for each zone
cost coefficients for R

Goals & Applications

• Make it as simple as possible for students and researchers to solve problems
that require variations of a power flow or OPF formulation, without having to
rewrite the parts that are shared with a standard formulation.

• To be able to easily extend and modify an optimal power flow formulation to
include new variables, constraints and/or costs.

• Example applications:

‣ co-optimize energy and reserves

‣ add environmental costs (e.g. CO2, SOx, NOx) or constraints

‣ contingency constrained OPF

➡ MATPOWER 4 available soon at: http://www.pserc.cornell.edu/matpower/

http://www.pserc.cornell.edu/matpower/
http://www.pserc.cornell.edu/matpower/

