
— DRAFT —
Matpower 4.0b1 User’s Manual

Ray D. Zimmerman

December 24, 2009

© 2009 Power Systems Engineering Research Center (Pserc)

All Rights Reserved

— DRAFT —

Contents

1 Introduction 4
1.1 What is Matpower? . 4
1.2 Where did it come from? . 4
1.3 Who may use it? . 4

2 Getting Started 5
2.1 System Requirements . 5
2.2 Installation . 5
2.3 Running a Simulation . 6

2.3.1 Preparing Case Input Data . 6
2.3.2 Solving the Case . 7
2.3.3 Accessing the Results . 8
2.3.4 Setting Options . 8

2.4 Documentation . 9

3 Modeling 10
3.1 Data Formats . 10
3.2 Branches . 11
3.3 Generators . 12
3.4 Loads . 12
3.5 Shunt Elements . 13
3.6 Network Equations . 13
3.7 DC Modeling . 14

4 Power Flow 16
4.1 AC Power Flow . 17
4.2 DC Power Flow . 18
4.3 runpf . 19
4.4 Linear Shift Factors . 19

5 Optimal Power Flow 21
5.1 Standard AC OPF . 21
5.2 Standard DC OPF . 22
5.3 Extended OPF Formulation . 23

5.3.1 User-defined Costs . 23
5.3.2 User-defined Constraints . 25
5.3.3 User-defined Variables . 25

2

— DRAFT —

5.4 Standard Extensions . 25
5.4.1 Piecewise Linear Costs . 26
5.4.2 Dispatchable Loads . 27
5.4.3 Generator Capability Curves 30
5.4.4 Branch Angle Difference Limits 30

5.5 Solvers . 30
5.6 runopf . 31

6 Unit De-commitment Algorithm 32

7 Acknowledgments 32

Appendix A Data File Format 34

Appendix B Matpower Options 37

Appendix C Summary of Matpower Functions 43
C.1 Automated Test Suite . 51

Appendix D Extras Directory 53

Appendix E Auctions Code 54
E.1 Handling Supply Shortfall . 56
E.2 Example . 57

References 61

3

— DRAFT —

1 Introduction

1.1 What is Matpower?

Matpower is a package of Matlab M-files for solving power flow and optimal power
flow problems. It is intended as a simulation tool for researchers and educators that
is easy to use and modify. Matpower is designed to give the best performance
possible while keeping the code simple to understand and modify. The Matpower
home page can be found at:

http://www.pserc.cornell.edu/matpower/

1.2 Where did it come from?

Matpower was initially developed by Ray D. Zimmerman, Carlos E. Murillo-
Sánchez and Deqiang Gan of PSERC1 at Cornell University under the direction of
Robert J. Thomas. The initial need for Matlab-based power flow and optimal power
flow code was born out of the computational requirements of the PowerWeb project2.
Many others have contributed to Matpower over the years and it continues to be
developed and maintained under the direction of Ray Zimmerman.

1.3 Who may use it?

• Matpower is free. Anyone may use it.

• We make no warranties, express or implied. Specifically, we make no guarantees
regarding the correctness Matpower’s code or its fitness for any particular
purpose.

• Any publications derived from the use of Matpower must cite Matpower.3

• Anyone may modify Matpower for their own use as long as the original
copyright notices remain in place.

• Matpower may not be redistributed without written permission.

• Modified versions of Matpower, or works derived from Matpower, may not
be distributed without written permission.

1http://www.pserc.cornell.edu/
2http://www.pserc.cornell.edu/powerweb/
3Use reference [1], or reference [9] until [1] is officially published.

4

http://www.pserc.cornell.edu/matpower/
http://www.pserc.cornell.edu/
http://www.pserc.cornell.edu/powerweb/

— DRAFT —

2 Getting Started

2.1 System Requirements

To use Matpower 4.0b1 you will need:

• Matlab version 6.5 or later4, available from The MathWorks5

For the hardware requirements, please refer to the system requirements for the
version of Matlab you are using6. If the Matlab Optimization Toolbox is installed as
well, Matpower enables an option to use it to solve optimal power flow problems,
though this option is not recommended for most applications.

2.2 Installation

Installation and use of Matpower requires familiarity with the basic operation of
Matlab, including setting up your Matlab path.

Step 1: Follow the download instructions on the Matpower home page7. You
should end up with a file named matpowerXXX.zip, where XXX depends on
the version of Matpower.

Step 2: Unzip the downloaded file. Move the resulting matpowerXXX directory to the
location of your choice. These files should not need to be modified, so it is
recommended that they be kept separate from your own code. We will use
$MATPOWER to denote the path to this directory.

Step 3: Add the following directories to your Matlab path:

• $MATPOWER – core Matpower functions

• $MATPOWER/t – test scripts for Matpower

• (optional) sub-directories of $MATPOWER/extras – additional functional-
ity and contributed code (see Appendix D for details).

4Although it is likely that many things work fine in earlier versions of Matlab 6, they are not sup-
ported. Matpower 3.2 required Matlab 6, Matpower 3.0 required Matlab 5 and Matpower 2.0
and earlier only required Matlab 4.

5http://www.mathworks.com/
6http://www.mathworks.com/support/sysreq/previous_releases.html
7http://www.pserc.cornell.edu/matpower/

5

http://www.mathworks.com/
http://www.mathworks.com/support/sysreq/previous_releases.html
http://www.pserc.cornell.edu/matpower/

— DRAFT —

Step 4: At the Matlab prompt, type test matpower to run the test suite and verify
that Matpower is properly installed and functioning. The result should
resemble the following, possibly including extra tests, depending on the
availablility of optional packages, solvers and extras.

>> test_matpower

t_loadcase..........ok

t_ext2int2ext.......ok

t_jacobian..........ok

t_hessian...........ok

t_hasPQcap..........ok

t_pf................ok

t_opf_pdipm.........ok

t_opf_scpdipm.......ok

t_opf_dc_ot.........ok

t_opf_dc_pdipm......ok

t_opf_dc_scpdipm....ok

t_opf_userfcns......ok

t_runopf_w_res......ok

t_makePTDF..........ok

t_makeLODF..........ok

t_total_load........ok

t_scale_load........ok

All tests successful (1085 of 1085)

Elapsed time 4.73 seconds.

2.3 Running a Simulation

The primary functionality of Matpower is to solve power flow and optimal power
flow (OPF) problems. This involves (1) preparing the input data defining the all of
the relevant power system parameters, (2) invoking the function to run the simulation
and (3) viewing and accessing the results that are printed to the screen and/or saved
in output data structures or files.

2.3.1 Preparing Case Input Data

The input data for the case to be simulated are specified in a set of data matrices
packaged as the fields of a Matlab struct, referred to as a “Matpower case” struct
and conventionally denoted by the variable mpc. This struct is typically defined in
a case file, either a function M-file whose return value is the mpc struct or a MAT-
file that defines a variable named mpc when loaded. The main simulation routines,

6

— DRAFT —

whose names begin with run (e.g. runpf, runopf), accept either a file name or a
Matpower case struct as an input.

Use loadcase to load the data from a case file into a struct if you want to make
modifications to the data before passing it to the simulation.

>> mpc = loadcase(casefile);

See also savecase for writing a Matpower case struct to a case file.
The structure of the Matpower case data is described a bit further in Section 3.1

and the full details are documented in Appendix A and can be accessed at any time
via the command help caseformat. The Matpower distribution also includes many
example case files listed in Table 4.

2.3.2 Solving the Case

The solver is invoked by calling one of the main simulation functions, such as runpf

or runopf, passing in a case file name or a case struct as the first argument. For
example, to run a simple Newton power flow with default options on the 9-bus system
defined in case9.m, at the Matlab prompt, type:

>> runpf('case9');

If, on the other hand, you wanted to load the 30-bus system data from case30.m,
increase its real power demand at bus 2 to 30 MW, then run an AC optimal power
flow with default options, this could be accomplished as follows:

>> define_constants;

>> mpc = loadcase('case30');
>> mpc.bus(2, PD) = 30;

>> runopf(mpc);

The define constants in the first line is simply a convenience function that defines a
number of variables to serve as named column indexes for the data matrices. In this
example, it allows us to access the “real power demand” column of the bus matrix
using the name PD without having to remember that it is the 3rd column.

Other top-level simulation functions are available for running DC versions of
power flow and OPF, for running an OPF with the option for Matpower to shut
down (decommit) expensive generators, etc. These functions are listed in Table 3 in
Appendix C.

7

— DRAFT —

2.3.3 Accessing the Results

By default, the results of the simulation are pretty-printed to the screen, displaying
a system summary, bus data, branch data and, for the OPF, binding constraint
information. The bus data includes the voltage, angle and total generation and load
at each bus. It also includes nodal prices in the case of the OPF. The branch data
shows the flows and losses in each branch. These pretty-printed results can be saved
to a file by providing a filename as the optional 3rd argument to the simulation
function.

The solution is also stored in a results struct available as an optional return value
from the simulation functions. This results struct is a superset of the Matpower
case struct mpc, with additional columns added to some of the existing data fields
and additional fields. The following example shows how simple it is, after running a
DC OPF on the 118-bus system in case118.m, to access the final objective function
value, the real power output of generator 6 and the power flow in branch 51.

>> results = rundcopf('case118');
>> final_objective = results.f;

>> gen6_output = results.gen(6, PG);

>> branch51_flow = results.branch(51, PF);

Full documentation for the content of the results struct can be found in Sec-
tions 4.3 and 5.6.

2.3.4 Setting Options

Matpower has many options for selecting among the available solution algorithms,
controlling the behavior of the algorithms and determining the details of the pretty-
printed output. These options are passed to the simulation routines as a Matpower
options vector. The elements of the vector have names that can be used to set the
corresponding value via the mpoption function. Calling mpoption with no arguments
returns the default options vector, the vector used if none is explicitly supplied.
Calling it with a set of name and value pairs modifies the default vector.

For example, the following code runs a power flow on the 300-bus example in
case300.m using the fast-decoupled (XB version) algorithm, with verbose printing of
the algorithm progress, but suppressing all of the pretty-printed output.

>> mpopt = mpoption('PF_ALG', 2, 'VERBOSE', 2, 'OUT_ALL', 0);

>> results = runpf('case300', mpopt);

8

— DRAFT —

To modify an existing options vector, for example, to turn the verbose option off
and re-run with the remaining options unchanged, simply pass the existing options
as the first argument to mpoption.

>> mpopt = mpoption(mpopt, 'VERBOSE', 0);

>> results = runpf('case300', mpopt);

See Appendix B or type:

>> help mpoption

for more information on Matpower’s options.

2.4 Documentation

There are two primary sources of documentation for Matpower. The first is this
manual, which gives an overview of Matpower’s capabilities and structure and
describes the modeling and formulations behind the code. It can be found in your
Matpower distribution at $MATPOWER/docs/manual.pdf

The second is the built-in help command. As with Matlab’s built-in functions
and toolbox routines, you can type help followed by the name of a command or
M-file to get help on that particular function. Nearly all of Matpower’s M-files
have such documentation and this should be considered the main reference for the
calling options for each individual function. See Appendix C for a list of Matpower
functions.

As an example, the help for runopf looks like:

>> help runopf

RUNOPF Runs an optimal power flow.

Output arguments options:

results = runopf(...)

[results, success] = runopf(...)

[baseMVA, bus, gen, gencost, branch, f, success, et] = runopf(...)

Input arguments options:

runopf(casename)

runopf(casename, mpopt)

runopf(casename, mpopt, fname)

9

— DRAFT —

runopf(casename, mpopt, fname, solvedcase)

Runs an optimal power flow and optionally returns the solved values in

the data matrices, the objective function value, a flag which is true if

the algorithm was successful in finding a solution, and the elapsed time

in seconds. Alternatively, the solution can be returned as fields in a

results struct and an optional success flag.

All input arguments are optional. If casename is provided it specifies

the name of the input data file or struct (see also 'help caseformat' and

'help loadcase') containing the opf data. The default value is 'case9'. If

the mpopt is provided it overrides the default MATPOWER options vector and

can be used to specify the solution algorithm and output options among

other things (see 'help mpoption' for details). If the 3rd argument is

given the pretty printed output will be appended to the file whose name is

given in fname. If solvedcase is specified the solved case will be written

to a case file in MATPOWER format with the specified name. If solvedcase

ends with '.mat' it saves the case as a MAT-file otherwise it saves it as

an M-file.

3 Modeling

Matpower employs all of the standard steady state models typically used for power
flow analysis. The AC models are described first, then the simplified DC models. In-
ternally, the magnitudes of all values are expressed in per unit and angles of complex
quantities are expressed in radians. Due to the strengths of the Matlab programming
language in handling matrices and vectors, the models and equations are presented
here in matrix and vector form.

3.1 Data Formats

The data files used by Matpower are Matlab M-files or MAT-files which define
and return a single Matlab struct. The M-file format is plain text that can be edited
using any standard text editor. The fields of the struct are baseMVA, bus, branch,
gen and optionally gencost, where baseMVA is a scalar and the rest are matrices.
In the matrices, each row corresponds to a single bus, branch, or generator. The
columns are similar to the columns in the standard IEEE CDF and PTI formats.
The number of rows in bus, branch and gen are nb, nl and ng, respectively. If
present, gencost has either ng or 2ng rows, depending on whether it includes costs
for reactive power or just real power. Full details of the Matpower case format are

10

— DRAFT —

documented in Appendix A and can be accessed from the Matlab command line by
typing help caseformat.

3.2 Branches

All transmission lines, transformers and phase shifters are modeled with a com-
mon branch model, consisting of a standard π transmission line model, with series
impedance zs = rs + jxs and total charging capacitance bc, in series with an ideal
phase shifting transformer. The transformer, whose tap ratio has magnitude τ and
phase shift angle θshift, is located at the from end of the branch, as shown in Figure 1.
The parameters rs, xs, bc, τ and θshift are specified directly in columns 3, 4, 5, 9 and
10, respectively, of the corresponding row of the branch matrix.

The complex current injections if and it at the from and to ends of the branch,
respectively, can be expressed in terms of the 2 × 2 branch admittance matrix Ybr
and the respective terminal voltages vf and vt,[

if
it

]
= Ybr

[
vf
vt

]
(1)

With the series admittance element in the π model denoted by ys = 1/zs, the branch
admittance matrix can be written

Ybr =

[(
ys + j bc

2

)
1
τ2
−ys 1

τe−jθshift

−ys 1
τejθshift

ys + j bc
2

]
(2)

Figure 1: Branch Model

11

— DRAFT —

If the four elements of this matrix for branch i are labeled as follows,

Y i
br =

[
yiff yift
yitf yitt

]
(3)

then four nl×1 vectors Yff , Yft, Ytf and Ytt can be constructed, where the i-th element
of each comes from the corresponding element of Y i

br. Furthermore, the nl×nb sparse
connection matrices Cf and Ct used in building the system admittance matrices can
be defined as follows. The (i, j)th element of Cf and the (i, k)th element of Ct are
equal to 1 for each branch i, where branch i connects from bus j to bus k. All other
elements of Cf and Ct are zero.

3.3 Generators

A generator is modeled as a complex power injection at a specific bus. For generator i,
the injection is

sig = pig + jqig (4)

Let Sg = Pg + jQg be the ng × 1 vector of these generator injections. The MW and
MVAr equivalents (before conversion to p.u.) of pig and qig are specified in columns 2
and 3, respectively of row i of the gen matrix. A sparse nb×ng generator connection
matrix Cg can be defined such that its (i, j)th element is 1 if generator j is located
at bus i and 0 otherwise. The nb× 1 vector of all bus injections from generators can
then be expressed as

Sg,bus = Cg · Sg (5)

3.4 Loads

Constant power loads are modeled as a specified quantity of real and reactive power
consumed at a bus. For bus i, the load is

sid = pid + jqid (6)

and Sd = Pd + jQd denotes the nb × 1 vector of complex loads at all buses. The
MW and MVAr equivalents (before conversion to p.u.) of pid and qid are specified in
columns 3 and 4, respectively of row i of the bus matrix.

Constant impedance and constant current loads are not implemented directly,
but the constant impedance portions can be modeled as a shunt element described
below. Dispatchable loads are modeled as negative generators and appear as negative
values in Sg.

12

— DRAFT —

3.5 Shunt Elements

A shunt connected element such as a capacitor or inductor is modeled as a fixed
impedance to ground at a bus. The admittance of the shunt element at bus i is given
as

yish = gish + jbish (7)

and Ysh = Gsh + jBsh denotes the nb × 1 vector of shunt admittances at all buses.
The parameters gish and bish are specified in columns 5 and 6, respectively, of row i
of the bus matrix as equivalent MW (consumed) and MVAr (injected) at a nominal
voltage magnitude of 1.0 p.u and angle of zero.

3.6 Network Equations

For a network with nb buses, all constant impedance elements of the model are
incorporated into a complex nb × nb bus admittance matrix Ybus that relates the
complex nodal current injections Ibus to the complex node voltages V .

Ibus = YbusV (8)

Similarly, for a network with nl branches, the nl × nb system branch admittance
matrices Yf and Yt relate the bus voltages to the nl × 1 vectors If and It of branch
currents at the from and to ends of all branches, respectively.

If = YfV (9)

It = YtV (10)

If [·] is used to denote an operator that takes an n × 1 vector and creates the
corresponding n×n diagonal matrix with the vector elements on the diagonal, these
system admittance matrices can be formed as follows.

Yf = [Yff]Cf + [Yft]Ct (11)

Yt = [Ytf]Cf + [Ytt]Ct (12)

Ybus = Cf
TYf + Ct

TYt + [Ysh] (13)

The current injections of (8)–(10) can be used to compute the corresponding
complex power injections as functions of the complex bus voltages V .

Sbus(V) = [V] I∗bus = [V]Y ∗busV
∗ (14)

Sf (V) = [CfV] I∗f = [CfV]Y ∗f V
∗ (15)

St(V) = [CtV] I∗t = [CtV]Y ∗t V
∗ (16)

13

— DRAFT —

The nodal bus injections are then matched to the injections from loads and generators
to form the AC nodal power balance equations, expressed as a function of the complex
bus voltages and generator injections in complex matrix form as

gS(V, Sg) = Sbus(V) + Sd − CgSg = 0. (17)

3.7 DC Modeling

The DC formulation is based on the same parameters, but with the following three
additional simplifying assumptions:

• Branches can be considered lossless. In particular, branch resistances rs and
charging capacitances bc are negligible.

ys =
1

rs + jxs
≈ 1

jxs
, bc ≈ 0 (18)

• All bus voltage magnitudes are close to 1 p.u.

vi ≈ ejθi (19)

• Voltage angle differences across branches are small enough that

sin(θf − θt − θshift) ≈ θf − θt − θshift. (20)

Substituting the first set of assumptions regarding branch parameters from (18),
the branch admittance matrix in (2) approximates to

Ybr ≈
1

jxs

[
1
τ2

− 1
τe−jθshift

− 1
τejθshift

1

]
(21)

Combining this and the second assumption with (1) yields the following approxima-
tion for if .

if ≈
1

jxs
(

1

τ 2
ejθf − 1

τe−jθshift
ejθt)

=
1

jxsτ
(
1

τ
ejθf − ej(θt+θshift)) (22)

14

— DRAFT —

The approximate power flow is then derived as follows

sf = pf + jqf

= vf · i∗f

≈ ejθf · j

xsτ
(
1

τ
e−jθf − e−j(θt+θshift))

=
j

xsτ

(
1

τ
− ej(θf−θt−θshift)

)
=

1

xsτ

[
sin(θf − θt − θshift)

+ j
(

1

τ
− cos(θf − θt − θshift)

)]
(23)

Finally, extracting the real part and applying the last of the DC modeling assump-
tions from (20) yields

pf ≈
1

xsτ
(θf − θt − θshift) (24)

As expected, given the lossless assumption, a similar derivation for pt leads to pt =
−pf .

The relationship between the real power flows and voltage angles for an individual
branch i can then be summarized as[

pf
pt

]
= Bi

br

[
θf
θt

]
+ P i

shift (25)

where Bi
br =

[
bi −bi
−bi bi

]
, P i

shift = θishift

[
−bi
bi

]
and bi is defined in terms of the

series reactance and tap ratio for that branch as bi = 1
xisτ

i .
For a shunt element at bus i, the amount of complex power consumed is

sish = vi(y
i
shvi)

∗

≈ ejθi(gish − jbish)e−jθi

= gish − jbish (26)

So the vector of real power consumed by shunt elements at all buses can be approx-
imated by

Psh ≈ Gsh (27)

15

— DRAFT —

With a DC model, the linear network equations relate real power to bus voltage
angles, versus complex currents to complex bus voltages in the AC case. Let the
nl × 1 vector Bff be constructed similar to Yff , where the i-th element is bi and let
Pf,shift be the nl × 1 vector whose i-th element is equal to −θishiftbi. Then the nodal
real power injections can be expressed as a linear function of Θ, the nb × 1 vector of
bus voltage angles

Pbus(Θ) = BbusΘ + Pbus,shift (28)

where
Pbus,shift = (Cf − Ct)TPf,shift (29)

Similarly, the branch flows at the from ends of each branch are linear functions of
the bus voltage angles

Pf (Θ) = BfΘ + Pf,shift (30)

and, due to the lossless assumption, the flows at the to ends are given by Pt = −Pf .
The construction of the system B matrices is analogous to the system Y matrices
for the AC model.

Bf = [Bff] (Cf − Ct) (31)

Bbus = (Cf − Ct)TBf (32)

The DC nodal power balance equations for the system can be expressed in matrix
form as

gP (Θ, Pg) = BbusΘ + Pbus,shift + Pd +Gsh − CgPg = 0 (33)

4 Power Flow

The standard power flow or loadflow problem involves solving for the set of voltages
and flows in a network corresponding to a specified pattern of load and generation.
Matpower includes solvers for both AC and DC power flow problems, both of
which involve solving a set of equations of the form

g(x) = 0, (34)

constructed by expressing a subset of the nodal power balance equations as functions
of unknown voltage quantities.

All of Matpower’s solvers exploit the sparsity of the problem and, except for
Gauss-Seidel, scale well to very large systems. Currently, none of them include any
automatic updating of transformer taps or other techniques to attempt to satisfy
typical optimal power flow constraints, such as generator, voltage or branch flow
limits.

16

— DRAFT —

4.1 AC Power Flow

In Matpower, by convention, a single generator bus is typically chosen as a refer-
ence bus to serve the roles of both a voltage angle reference and a real power slack.
The voltage angle at the reference bus has a known value, but the real power gen-
eration at the slack bus is taken as unknown to avoid overspecifying the problem.
The remaining generator buses are classified as PV buses, with the values of voltage
magnitude and generator real power injection given. Since the loads Pd and Qd are
also given, all non-generator buses are PQ buses, with real and reactive injections
fully specified. Let Iref , IPV and IPQ denote the sets of bus indices of the reference
bus, PV buses and PQ buses, respectively.

In the traditional formulation of the AC power flow problem, the power balance
equation in (17) is split into its real and reactive components, expressed as functions
of the voltage angles Θ and magnitudes Vm and generator injections Pg and Qg,
where the load injections are assumed constant and given.

gP (Θ, Vm, Pg) = Pbus(Θ, Vm) + Pd − CgPg = 0 (35)

gQ(Θ, Vm, Qg) = Qbus(Θ, Vm) +Qd − CgQg = 0 (36)

For the AC power flow problem, the function g(x) from (34) is formed by taking
the left hand side of the real power balance equations (35) for all non-slack buses
and the reactive power balance equations (36) for all PQ buses and plugging in the
reference angle, the loads and the known generator injections and voltage magnitudes.

g(x) =

[
g
{i}
P (Θ, Vm, Pg)

g
{j}
Q (Θ, Vm, Qg)

]
∀i ∈ IPV ∪ IPQ

∀j ∈ IPQ
(37)

The vector x consists of the remaining unknown voltage quantities, namely the volt-
age angles at all non-reference buses and the voltage magnitudes at PQ buses.

x =

[
θ{i}
v{j}m

]
∀i /∈ Iref

∀j ∈ IPQ
(38)

This yields a system of non-linear equations with npv + 2npq equations and un-
knowns, where npv and npq are the number of PV and PQ buses, respectively. After
solving for x, the remaining real power balance equation can be used to compute
the generator real power injection at the slack bus. Similarly, the remaining npv + 1
reactive power balance equations yield the generator reactive power injections.

Matpower includes four different algorithms for solving the AC power flow
problem. The default solver is based on a standard Newton’s method [3] using a

17

— DRAFT —

polar form and a full Jacobian updated at each iteration. Each Newton step involves
computing the mismatch g(x), forming the Jacobian based on the sensitivities of
these mismatches to changes in x and solving for an updated value of x by factorizing
this Jacobian. This method is described in detail in many textbooks.

Also included are solvers based on variations of the fast-decoupled method [4],
specifically, the XB and BX methods described in [5]. These solvers greatly reduce
the amount of computation per iteration, by updating the voltage magnitudes and
angles separately based on constant approximate Jacobians which are factored only
once at the beginning of the solution process. These per-iteration savings, however,
come at the cost of more iterations.

The fourth algorithm is the standard Gauss-Seidel method from Glimm and
Stagg [6]. It has numerous disadvantages relative to the Newton method and is
included primarily for academic interest.

By default, the AC power flow solvers simply solve the problem described above,
ignoring any generator limits, branch flow limits, voltage magnitude limits, etc. How-
ever, there is an option (ENFORCE Q LIMS) that allows for the generator reactive power
limits to be respected at the expense of the voltage setpoint. This is done in a rather
brute force fashion by adding an outer loop around the AC power flow solution. If
any generator has a violated reactive power limit, its reactive injection is fixed at
the limit, the corresponding bus is converted to a PQ bus and the power flow is
solved again. This procedure is repeated until there are no more violations. Note
that this option is based solely on the QMIN and QMAX parameters for the generator
and does not take into account the trapezoidal generator capability curves described
in Section 5.4.3.

4.2 DC Power Flow

For the DC power flow problem [7], the vector x consists of the set of voltage angles
at non-reference buses

x =
[
θ{i}

]
, ∀i /∈ Iref (39)

and equation (34) takes the form

Bdcx− Pdc = 0 (40)

where Bdc is the (nb− 1)× (nb− 1) matrix obtained by simply eliminating from Bbus

the row and column corresponding to the slack bus and reference angle, respectively.
Given that the generator injections Pg are specified at all but the slack bus, Pdc can
be found directly from the non-slack rows of (33).

18

— DRAFT —

The voltage angles in x are computed by a direct solution of the set of linear equa-
tions. The branch flows and slack bus generator injection are then calculated directly
from the bus voltage angles via (30) and the appropriate row in (33), respectively.

4.3 runpf

In Matpower, a power flow is executed by calling runpf. In addition to printing
output to the screen, which it does by default, runpf optionally returns the solution
in a results struct.

>> results = runpf(mpc);

The results struct is a superset of the input Matpower case struct mpc, with
some additional fields as well as additional columns in some of the existing data
fields. The solution values are stored as follows:

Table 1: Power Flow Results

name description

results.bus(:, VM) bus voltage magnitudes
results.bus(:, VA) bus voltage angles
results.gen(:, PG) generator real power injections
results.gen(:, QG) generator reactive power injections
results.branch(:, PF) real power injected into from” end of branch
results.branch(:, PT) real power injected into “to” end of branch
results.branch(:, QF) reactive power injected into “from” end of branch
results.branch(:, QT) reactive power injected into “to” end of branch
results.success 1 = solved successfully, 0 = unable to solve
results.et computation time required for solution

4.4 Linear Shift Factors

The DC power flow model can also be used to compute the sensitivities of branch
flows to changes in nodal real power injections, sometimes called injection shift factors
(ISF) or generation shift factors [7]. These nl × nb sensitivity matrices, also called
power transfer distribution factors or PTDF’s, carry an implicit assumption about
the slack distribution. If H is used to denote a PTDF matrix, then the element in

19

— DRAFT —

row i and column j, hij, represents the change in the real power flow in branch i
given a unit increase in the power injected at bus j, with the assumption that the
additional unit of power is extracted according to some specified slack distribution.

∆Pf = H∆Pbus (41)

This slack distribution can be expressed as an nb × 1 vector w of non-negative
weights whose elements sum to 1. Each element specifies the proportion of the slack
taken up at each bus. For the special case of a single slack bus k, w is equal to the
vector ek. The corresponding PTDF matrix Hk can be constructed by first creating
the nl × (nb − 1) matrix

H̃k = B̃f ·B−1
dc (42)

then inserting a column of zeros at column k. Here B̃f and Bdc are obtained from Bf

and Bbus, respectively, by eliminating their reference bus columns and, in the case
of Bdc, removing row k corresponding to the slack bus.

The PTDF matrix Hw, corresponding to a general slack distribution w, can be
obtained from any other PTDF, such as Hk, by subtracting w from each column,
equivalent to the following simple matrix multiplication

Hw = Hk(I − w · 1T) (43)

These same linear shift factors may also be used to compute sensitivities of branch
flows to branch outages, known as line outage distribution factors or LODF’s [8].
Given a PTDF matrix Hw, the corresponding nl × nl LODF matrix L can be con-
structed as follows, where lij is the element in row i and column j, representing the
change in flow in branch i (as a fraction of its initial flow) for an outage of branch j.

First, let H represent the matrix of sensitivities of branch flows to branch flows,
found by multplying the PTDF matrix by the node-branch incidence matrix.

H = Hw(Cf − Ct)T (44)

If hij is the sensitivity of flow in branch i with respect to flow in branch j, then lij
can be expressed as

lij =


hij

1− hjj
i 6= j

−1 i = j
(45)

Matpower includes functions for computing both the DC PTDF matrix and
the corresponding LODF matrix for either a single slack bus k or a general slack
distribution vector w. See the help for makePTDF and makeLODF for details.

20

— DRAFT —

5 Optimal Power Flow

Matpower includes code to solve both AC and DC versions of the optimal power
flow problem. The standard version of each takes the following form.

min
x
f(x) (46)

subject to

g(x) = 0 (47)

h(x) ≤ 0 (48)

xmin ≤ x ≤ xmax (49)

5.1 Standard AC OPF

The optimization vector x for the standard AC OPF problem consists of the nb × 1
vectors of voltage angles Θ and magnitudes Vm and the ng × 1 vectors of generator
real and reactive power injections Pg and Qg.

x =


Θ
Vm
Pg
Qg

 (50)

The objective function (46) is simply a summation of individual polynomial cost
functions f iP and f iQ of real and reactive power injections, respectively, for each
generator.

min
Θ,Vm,Pg ,Qg

ng∑
i=1

f iP (pig) + f iQ(qig) (51)

The equality constraints in (47) are simply the full set of 2 · nb non-linear real and
reactive power balance equations from (35) and (36). The inequality constraints (48)
consist of two sets of nl branch flow limits as non-linear functions of the bus voltage
angles and magnitudes, one for the from end and one for the to end of each branch.

hf (Θ, Vm) = |Ff (Θ, Vm)| − Fmax ≤ 0 (52)

ht(Θ, Vm) = |Ft(Θ, Vm)| − Fmax ≤ 0 (53)

21

— DRAFT —

The flows are typically apparent power flows expressed in MVA, but can be real power
or current flows, yielding the following three possible forms for the flow constraints

Ff (Θ, Vm) =


Sf (Θ, Vm), apparent power

Pf (Θ, Vm), real power

If (Θ, Vm), current

(54)

where If is defined in (9), Sf in (15), Pf = <{Sf} and the vector of flow limits Fmax

has the appropriate units for the type of constraint. Likewise for Ft(Θ, Vm).
The variable limits (49) include an equality constraint on any reference bus angle

and upper and lower limits on all bus voltage magnitudes and real and reactive
generator injections.

θref
i ≤ θi ≤ θref

i , i ∈ Iref (55)

vi,min
m ≤ vim ≤ vi,max

m , i = 1 . . . nb (56)

pi,min
g ≤ pig ≤ pi,max

g , i = 1 . . . ng (57)

qi,min
g ≤ qig ≤ qi,max

g , i = 1 . . . ng (58)

5.2 Standard DC OPF

When using DC network modeling assumptions, the standard OPF problem above
can be simplified to a quadratic program, with linear constraints and a quadratic cost
function. In this case, the voltage magnitudes and reactive powers are eliminated
from the problem completely and real power flows are modeled as linear functions of
the voltage angles. The optimization variable is

x =

[
Θ
Pg

]
(59)

and the overall problem reduces to the following form.

min
Θ,Pg

ng∑
i=1

f iP (pig) (60)

subject to
gP (Θ, Pg) = BbusΘ + Pbus,shift + Pd +Gsh − CgPg = 0 (61)

hf (Θ) = BfΘ + Pf,shift − Fmax ≤ 0 (62)

ht(Θ) = −BfΘ− Pf,shift − Fmax ≤ 0 (63)

θref
i ≤ θi ≤ θref

i , i ∈ Iref (64)

pi,min
g ≤ pig ≤ pi,max

g , i = 1 . . . ng (65)

22

— DRAFT —

5.3 Extended OPF Formulation

Matpower employs an extensible OPF structure [9] to allow the user to modify
or augment the problem formulation without rewriting the portions that are shared
with the standard OPF formulation. This is done through optional input parame-
ters, preserving the ability to use pre-compiled solvers. The standard formulation is
modified by introducing additional optional user-defined costs fu, constraints, and
variables z and can be written in the following form.

min
x,z

f(x) + fu(x, z) (66)

subject to

g(x) = 0 (67)

h(x) ≤ 0 (68)

xmin ≤ x ≤ xmax (69)

l ≤ A

[
x
z

]
≤ u (70)

zmin ≤ z ≤ zmax (71)

5.3.1 User-defined Costs

The user-defined cost function fu is specified in terms of parameters H, C, N , r̂, k,
d and m. All of the parameters are nw × 1 vectors except the symmetric nw × nw
matrix H and the nw × (nx + nz) matrix N . The cost takes the form

fu(x, z) =
1

2
wTHw + CTw (72)

where w is defined in several steps as follows. First, a new vector u is created by
applying a linear transformation N and shift r̂ to the full set of optimization variables

r = N

[
x
z

]
, (73)

u = r − r̂, (74)

then a scaled function with a “dead zone” is applied to each element of u to produce
the corresponding element of w.

wi =


mifdi(ui + ki), ui < −ki

0, −ki ≤ ui ≤ ki
mifdi(ui − ki), ui > ki

(75)

23

— DRAFT —

Here ki specifies the size of the “dead zone”, mi is a simple scale factor and fdi is
a pre-defined scalar function selected by the value of di. Currently, Matpower
implements only linear and quadratic options

fdi(α) =

{
α, if di = 1
α2, if di = 2

(76)

as illustrated in Figure 2 and Figure 3, respectively.

wi

mi

ri

r̂i

ki ki

Figure 2: Relationship of wi to ri for di = 1 (linear option)

This form for fu provides the flexibility to handle a wide range of costs, from
simple linear functions of the optimization variables to scaled quadratic penalties
on quantities, such as voltages, lying outside a desired range, to functions of linear
combinations of variables, inspired by the requirements of price coordination terms
found in the decomposition of large loosely coupled problems encountered in our own
research.

Some limitations are imposed on the parameters in the case of the DC OPF since
Matpower uses a generic quadratic programming (QP) solver for the optimization.
In particular, ki = 0 and di = 1 for all i, so the “dead zone” is not considered and
only the linear option is available for fdi . As a result, for the DC case (75) simplifies
to wi = miui.

24

— DRAFT —

wi

ri

r̂i

kiki

Figure 3: Relationship of wi to ri for di = 2 (quadratic option)

5.3.2 User-defined Constraints

The user-defined constraints (70) are general linear restrictions involving all of the
optimization variables and are specified via matrix A and lower and upper bound
vectors l and u. These parameters can be used to create equality constraints (li = ui)
or inequality constraints that are bounded below (ui =∞), bounded above (li =∞)
or bounded on both sides.

5.3.3 User-defined Variables

The creation of additional user-defined z variables is done implicitly based on the
difference between the number of columns in A and the dimension of x. The op-
tional vectors zmin and zmax are available to impose lower and upper bounds on z,
respectively.

5.4 Standard Extensions

In addition to making this extensible OPF structure available to end users, Mat-
power also takes advantage of it internally to implement several additional capa-
bilities.

25

— DRAFT —

5.4.1 Piecewise Linear Costs

The standard OPF formulation in (46)–(49) does not directly handle the non-smooth
piecewise linear cost functions that typically arise from discrete bids and offers in
electricity markets. When such cost functions are convex, however, they can be
modeled using a constrained cost variable (CCV) method. The piecewise linear cost
function c(x) is replaced by a helper variable y and a set of linear constraints that
form a convex “basin” requiring the cost variable y to lie in the epigraph of the
function c(x).

Figure 4 illustrates a convex n-segment piecewise linear cost function

c(x) =


m1(x− x1) + c1, x ≤ x1

m2(x− x2) + c2, x1 < x ≤ x2
...

...
mn(x− xn) + cn, xn−1 < x

(77)

defined by a sequence of points (xj, cj), j = 0 . . . n, where mj denotes the slope of

x
x0 x1 x2

c

c0

c1

c2

y

cn

xn

Figure 4: Constrained Cost Variable

26

— DRAFT —

the j-th segment,

mj =
cj − cj−1

xj − xj−1

, j = 1 . . . n (78)

and x0 < x1 < · · · < xn and m1 ≤ m2 ≤ · · · < mn.
The “basin” corresponding to this cost function is formed by the following n

constraints on the helper cost variable y.

y ≥ mj(x− xj) + cj, j = 1 . . . n (79)

The cost term added to the objective function in place of c(x) is simply the variable
y.

Matpower uses this CCV approach internally to automatically convert any
piecewise linear costs on real or reactive generation into the appropriate helper vari-
able and corresponding set of constraints. All of Matpower’s OPF solvers use the
CCV approach with the exception of two that are part of the optional TSPOPF pack-
age [10], namely the step-controlled primal/dual interior point method (SCPDIPM)
and the trust region based augmented Lagrangian method (TRALM), both of which
use a cost smoothing technique instead [11].

5.4.2 Dispatchable Loads

A simple approach to dispatchable or price-sensitive loads is to model them as nega-
tive real power injections with associated negative costs. This is done by specifying
a generator with a negative output, ranging from a minimum injection equal to the
negative of the largest possible load to a maximum injection of zero.

Consider the example of a price-sensitive load whose marginal benefit function is
shown in Figure 5. The demand pd of this load will be zero for prices above λ1, p1

for prices between λ1 and λ2, and p1 + p2 for prices below λ2.
This corresponds to a negative generator with the piecewise linear cost curve

shown in Figure 6. Note that this approach assumes that the demand blocks can be
partially dispatched or “split”. Requiring blocks to be accepted or rejected in their
entirety would pose a mixed-integer problem that is beyond the scope of the current
Matpower implementation.

With an AC network model, there is also the question of reactive dispatch for
such loads. Typically the reactive injection for a generator is allowed to take on any
value within its defined limits. Since this is not normal load behavior, the model used
in Matpower assumes that dispatchable loads maintain a constant power factor.
When formulating the AC OPF problem, Matpower will automatically generate

27

— DRAFT —

λ (marginal benefit)

$/MW

MW

λ1

λ2

p1

p2

p (load)

Figure 5: Marginal Benefit or Bid Function

MW

λ2

p2

λ1

p1

p1p2

$

p (injection)

c (total cost)

Figure 6: Total Cost Function for Negative Injection

28

— DRAFT —

an additional equality constraint to enforce a constant power factor for any “negative
generator” being used to model a dispatchable load.

It should be noted that, with this definition of dispatchable loads as negative
generators, if the negative cost corresponds to a benefit for consumption, minimizing
the cost f(x) of generation is equivalent to maximizing social welfare.

qmax
1

qmax
2

qmin
2

qmin
1

qmin

qmax

pmaxpminp1 p2

q

p

Figure 7: Generator P -Q Capability Curve

29

— DRAFT —

5.4.3 Generator Capability Curves

The typical AC OPF formulation includes box constraints on a generator’s real and
reactive injections, specified as simple lower and upper bounds on p (pmin and pmax)
and q (qmin and qmax). On the other hand, the true P -Q capability curves of physical
generators usually involve some tradeoff between real and reactive capability, so that
it is not possible to produce the maximum real output and the maximum (or min-
imum) reactive output simultaneously. To approximate this tradeoff, Matpower
includes the ability to add an upper and lower sloped portion to the standard box
constraints as illustrated in Figure 7, where the shaded portion represents the feasible
operating region for the unit.

The two sloped portions are constructed from the lines passing through the two
pairs of points defined by the six parameters p1, qmin

1 , qmax
1 , p2, qmin

2 , and qmax
2 . If

these six parameters are specified for a given generator, Matpower automatically
constructs the corresponding additional linear inequality constraints on p and q for
that unit.

5.4.4 Branch Angle Difference Limits

The difference between the bus voltage angle θf at the from end of a branch and
the angle θt at the to end can be bounded above and below to act as a proxy for
a transient stability limit, for example. If these limits are provided, Matpower
creates the corresponding constraints on the voltage angle variables.

5.5 Solvers

Early versions of Matpower relied on Matlab’s Optimization Toolbox [12] to pro-
vide the NLP and QP solvers needed to solve the AC and DC OPF problems, respec-
tively. While they worked reasonably well for very small systems, they did not scale
well to larger networks. Eventually, optional packages with additional solvers were
added to improve performance, typically relying on Matlab extension (MEX) files
implemented in Fortran or C and pre-compiled for each machine architecture. These
MEX files are distributed as optional packages due to differences in terms of use. For
DC optimal power flow, there is a MEX build [13] of the high performance BPMPD
solver [14] for LP/QP problems. For the AC OPF problem, the MINOPF [15] and
TSPOPF [10] packages provide solvers suitable for much larger systems. The former
is based on MINOS [16] and the latter includes the primal-dual interior point and
trust region based augmented Lagrangian methods described in [11].

30

— DRAFT —

Beginnning with version 4, Matpower also includes its own primal-dual interior
point method (PDIPM) implemented in pure-Matlab code, derived from the MEX
implementation of the algorithms described in [11]. If no optional packages are
installed, this PDIPM solver will be used by default for both the AC OPF and as the
QP solver used by the DC OPF. The AC OPF solver also employs a unique technique
for efficiently forming the required Hessians via a few simple matrix operations.
This solver has application to general non-linear optimization problems outside of
Matpower and comes with a convenience wrapper function to make it trivial to
set up and solve LP and QP problems.

5.6 runopf

In Matpower, an optimal power flow is executed by calling runopf. In addition
to printing output to the screen, which it does by default, runopf optionally returns
the solution in a results struct.

>> results = runopf(mpc);

The results struct is a superset of the input Matpower case struct mpc, with
some additional fields as well as additional columns in some of the existing data
fields. In addition to the solution values included in the results for a simple power
flow, shown in Table 1 in Section 4.3, the following additional optimal power flow
solution values are stored as follows:

Table 2: Optimal Power Flow Results

name description

results.bus(:, LAM P) Lagrange multiplier on real power mismatch
results.bus(:, LAM Q) Lagrange multiplier on reactive power mismatch
results.bus(:, MU VMAX) Kuhn-Tucker multiplier on upper voltage limit
results.bus(:, MU VMIN) Kuhn-Tucker multiplier on lower voltage limit
results.gen(:, MU PMAX) Kuhn-Tucker multiplier on upper Pg limit
results.gen(:, MU PMIN) Kuhn-Tucker multiplier on lower Pg limit
results.gen(:, MU QMAX) Kuhn-Tucker multiplier on upper Qg limit
results.gen(:, MU QMIN) Kuhn-Tucker multiplier on lower Qg limit
results.branch(:, MU SF) Kuhn-Tucker multiplier on flow limit at “from” bus
results.branch(:, MU ST) Kuhn-Tucker multiplier on flow limit at “to” bus

31

— DRAFT —

6 Unit De-commitment Algorithm

The standard OPF formulation described in the previous section has no mechanism
for completely shutting down generators which are very expensive to operate. Instead
they are simply dispatched at their minimum generation limits. Matpower includes
the capability to run an optimal power flow combined with a unit de-commitment
for a single time period, which allows it to shut down these expensive units and find
a least cost commitment and dispatch. To run this for case30, for example, type:

>> runuopf('case30')

Matpower uses an algorithm similar to dynamic programming to handle the
de-commitment. It proceeds through a sequence of stages, where stage N has N
generators shut down, starting with N = 0.

The algorithm proceeds as follows:

Step 1: Begin at stage zero (N = 0), assuming all generators are on-line with all
limits in place.

Step 2: Solve a normal OPF. Save the solution as the current best.

Step 3: Go to the next stage, N = N+1. Using the best solution from the previous
stage as the base case for this stage, form a candidate list of generators
with minimum generation limits binding. If there are no candidates, skip
to Step 5.

Step 4: For each generator on the candidate list, solve an OPF to find the total
system cost with this generator shut down. Replace the current best solu-
tion with this one if it has a lower cost. If any of the candidate solutions
produced an improvement, return to Step 3.

Step 5: Return the current best solution as the final solution.

7 Acknowledgments

The authors would like to acknowledge contributions from others who have helped
make Matpower what it is today. Thanks to Chris DeMarco, one of our PSERC
associates at the University of Wisconsin, for the technique for building the Jacobian
matrix. Our appreciation to Bruce Wollenberg for all of his suggestions for improve-
ments to version 1. The enhanced output functionality in version 2.0 is primarily due

32

— DRAFT —

to his input. Thanks also to Andrew Ward for code which helped us verify and test
the ability of the OPF to optimize reactive power costs. Thanks to Alberto Borghetti
for contributing code for the Gauss-Seidel power flow solver. Thanks to Roman Ko-
rab for data for the Polish system. Some state estimation code was contributed by
James S. Thorp and Rui Bo contributed additional code for state estimation and
continuation power flow. Thanks also to many others who have contributed code,
bug reports and suggestions over the years. Last but not least, we would like to
acknowledge the input and support of Bob Thomas throughout the development of
Matpower.

33

— DRAFT —

Appendix A Data File Format

The data files used by Matpower are simply Matlab M-files or MAT-files which
define and return the variables baseMVA, bus, branch, gen, areas, and gencost. The
baseMVA variable is a scalar and the rest are matrices. Each row in the matrix
corresponds to a single bus, branch, or generator. The columns are similar to the
columns in the standard IEEE and PTI formats. The details of the specification of
the Matpower case file can be found in the help for caseformat.m:

>> help caseformat

CASEFORMAT Defines the MATPOWER case file format.

A MATPOWER case file is an M-file or MAT-file which defines the variables

baseMVA, bus, gen, branch, areas (optional), and gencost (optional). With

the exception of baseMVA, a scalar, each data variable is a matrix, where

a row corresponds to a single bus, branch, gen, etc. The format of the

data is similar to the PTI format described in

http://www.ee.washington.edu/research/pstca/formats/pti.txt

except where noted. An item marked with (+) indicates that it is included

in this data but is not part of the PTI format. An item marked with (-) is

one that is in the PTI format but is not included here. Those marked with

(2) were added for version 2 of the case file format. The columns for

each data matrix are given below.

MATPOWER Case Version Information:

A version 1 case file defined the data matrices directly. The last two,

areas and gencost, were optional since they were not needed for running

a simple power flow. In version 2, each of the data matrices are stored

as fields in a struct. It is this struct, rather than the individual

matrices, that is returned by a version 2 M-casefile. Likewise a version 2

MAT-casefile stores a struct named 'mpc' (for MATPOWER case). The struct

also contains a 'version' field so MATPOWER knows how to interpret the

data. Any case file which does not return a struct, or any struct which

does not have a 'version' field is considered to be in version 1 format.

See also IDX_BUS, IDX_BRCH, IDX_GEN, IDX_AREA and IDX_COST regarding

constants which can be used as named column indices for the data matrices.

Also described in the first three are additional columns that are added

to the bus, branch and gen matrices by the power flow and OPF solvers.

Bus Data Format

1 bus number (1 to 29997)

2 bus type

PQ bus = 1

PV bus = 2

reference bus = 3

34

— DRAFT —

isolated bus = 4

3 Pd, real power demand (MW)

4 Qd, reactive power demand (MVAr)

5 Gs, shunt conductance (MW (demanded) at V = 1.0 p.u.)

6 Bs, shunt susceptance (MVAr (injected) at V = 1.0 p.u.)

7 area number, 1-100

8 Vm, voltage magnitude (p.u.)

9 Va, voltage angle (degrees)

(-) (bus name)

10 baseKV, base voltage (kV)

11 zone, loss zone (1-999)

(+) 12 maxVm, maximum voltage magnitude (p.u.)

(+) 13 minVm, minimum voltage magnitude (p.u.)

Generator Data Format

1 bus number

(-) (machine identifier, 0-9, A-Z)

2 Pg, real power output (MW)

3 Qg, reactive power output (MVAr)

4 Qmax, maximum reactive power output (MVAr)

5 Qmin, minimum reactive power output (MVAr)

6 Vg, voltage magnitude setpoint (p.u.)

(-) (remote controlled bus index)

7 mBase, total MVA base of this machine, defaults to baseMVA

(-) (machine impedance, p.u. on mBase)

(-) (step up transformer impedance, p.u. on mBase)

(-) (step up transformer off nominal turns ratio)

8 status, > 0 - machine in service

<= 0 - machine out of service

(-) (% of total VAr's to come from this gen in order to hold V at

remote bus controlled by several generators)

9 Pmax, maximum real power output (MW)

10 Pmin, minimum real power output (MW)

(2) 11 Pc1, lower real power output of PQ capability curve (MW)

(2) 12 Pc2, upper real power output of PQ capability curve (MW)

(2) 13 Qc1min, minimum reactive power output at Pc1 (MVAr)

(2) 14 Qc1max, maximum reactive power output at Pc1 (MVAr)

(2) 15 Qc2min, minimum reactive power output at Pc2 (MVAr)

(2) 16 Qc2max, maximum reactive power output at Pc2 (MVAr)

(2) 17 ramp rate for load following/AGC (MW/min)

(2) 18 ramp rate for 10 minute reserves (MW)

(2) 19 ramp rate for 30 minute reserves (MW)

(2) 20 ramp rate for reactive power (2 sec timescale) (MVAr/min)

(2) 21 APF, area participation factor

Branch Data Format

35

— DRAFT —

1 f, from bus number

2 t, to bus number

(-) (circuit identifier)

3 r, resistance (p.u.)

4 x, reactance (p.u.)

5 b, total line charging susceptance (p.u.)

6 rateA, MVA rating A (long term rating)

7 rateB, MVA rating B (short term rating)

8 rateC, MVA rating C (emergency rating)

9 ratio, transformer off nominal turns ratio (= 0 for lines)

(taps at 'from' bus, impedance at 'to' bus,

i.e. if r = x = 0, then ratio = Vf / Vt)

10 angle, transformer phase shift angle (degrees), positive => delay

(-) (Gf, shunt conductance at from bus p.u.)

(-) (Bf, shunt susceptance at from bus p.u.)

(-) (Gt, shunt conductance at to bus p.u.)

(-) (Bt, shunt susceptance at to bus p.u.)

11 initial branch status, 1 - in service, 0 - out of service

(2) 12 minimum angle difference, angle(Vf) - angle(Vt) (degrees)

(2) 13 maximum angle difference, angle(Vf) - angle(Vt) (degrees)

(+) Generator Cost Data Format

NOTE: If gen has n rows, then the first n rows of gencost contain

the cost for active power produced by the corresponding generators.

If gencost has 2*n rows then rows n+1 to 2*n contain the reactive

power costs in the same format.

1 model, 1 - piecewise linear, 2 - polynomial

2 startup, startup cost in US dollars

3 shutdown, shutdown cost in US dollars

4 n, number of cost coefficients to follow for polynomial

cost function, or number of data points for piecewise linear

5 and following, cost data defining total cost function

For polynomial cost:

c2, c1, c0

where the polynomial is c0 + c1*P + c2*P^2

For piecewise linear cost:

x0, y0, x1, y1, x2, y2, ...

where x0 < x1 < x2 < ... and the points (x0,y0), (x1,y1),

(x2,y2), ... are the end- and break-points of the cost function.

(+) Area Data Format (deprecated)

(this data is not used by MATPOWER and is no longer necessary for

version 2 case files with OPF data).

1 i, area number

2 price_ref_bus, reference bus for that area

36

— DRAFT —

Appendix B Matpower Options

Matpower uses an options vector to control the many options available. It is
similar to the options vector produced by the foptions function in early versions
of Matlab’s Optimization Toolbox. The primary difference is that modifications
can be made by option name, as opposed to having to remember the index of each
option. The default Matpower options vector is obtained by calling mpoption with
no arguments. So, typing:

>> runopf('case30', mpoption)

is another way to run the OPF solver with the all of the default options.
The Matpower options vector controls the following:

• power flow algorithm

• power flow termination criterion

• power flow options (e.g. enforcing of reactive power generation limits)

• OPF algorithm

• OPF default algorithms for different cost models

• OPF cost conversion parameters

• OPF termination criterion

• OPF options (e.g. active vs. apparent power vs. current for line limits)

• verbose level

• printing of results

The details are given below:

>> help mpoption

MPOPTION Used to set and retrieve a MATPOWER options vector.

opt = mpoption

returns the default options vector

opt = mpoption(name1, value1, name2, value2, ...)

returns the default options vector with new values for up to 7

37

— DRAFT —

options, name# is the name of an option, and value# is the new

value. Example: options = mpoption('PF_ALG', 2, 'PF_TOL', 1e-4)

opt = mpoption(opt, name1, value1, name2, value2, ...)

same as above except it uses the options vector opt as a base

instead of the default options vector.

The currently defined options are as follows:

idx - NAME, default description [options]

--- ------------- -------------------------------------

power flow options

1 - PF_ALG, 1 power flow algorithm

[1 - Newton's method]

[2 - Fast-Decoupled (XB version)]

[3 - Fast-Decoupled (BX version)]

[4 - Gauss Seidel]

2 - PF_TOL, 1e-8 termination tolerance on per unit

P & Q mismatch

3 - PF_MAX_IT, 10 maximum number of iterations for

Newton's method

4 - PF_MAX_IT_FD, 30 maximum number of iterations for

fast decoupled method

5 - PF_MAX_IT_GS, 1000 maximum number of iterations for

Gauss-Seidel method

6 - ENFORCE_Q_LIMS, 0 enforce gen reactive power limits

at expense of |V|

[0 - do NOT enforce limits]

[1 - enforce limits, simultaneous bus type conversion]

[2 - enforce limits, one-at-a-time bus type conversion]

10 - PF_DC, 0 use DC power flow formulation, for

power flow and OPF

[0 - use AC formulation & corresponding algorithm opts]

[1 - use DC formulation, ignore AC algorithm options]

OPF options

11 - OPF_ALG, 0 solver to use for AC OPF

[0 - choose default solver available in the following]

[order, 500, 540, 560]

[300 - generalized formulation, constr]

[320 - generalized formulation, dense LP]

[340 - generalized formulation, sparse LP (relaxed)]

[360 - generalized formulation, sparse LP (full)]

[500 - generalized formulation, MINOS]

[520 - generalized formulation, fmincon]

[540 - generalized formulation, PDIPM]

[primal/dual interior point method]

38

— DRAFT —

[545 - generalized formulation (except CCV), SCPDIPM]

[step-controlled primal/dual interior point method]

[550 - generalized formulation (except CCV), TRALM]

[trust region based augmented Langrangian method]

[560 - generalized formulation, PDIPM (pure Matlab)]

[primal/dual interior point method]

[565 - generalized formulation, SCPDIPM (pure Matlab)]

[step-controlled primal/dual interior point method]

16 - OPF_VIOLATION, 5e-6 constraint violation tolerance

17 - CONSTR_TOL_X, 1e-4 termination tol on x for copf & fmincopf

18 - CONSTR_TOL_F, 1e-4 termination tol on F for copf & fmincopf

19 - CONSTR_MAX_IT, 0 max number of iterations for copf & fmincopf

[0 => 2*nb + 150]

20 - LPC_TOL_GRAD, 3e-3 termination tolerance on gradient for lpopf

21 - LPC_TOL_X, 1e-4 termination tolerance on x (min step size)

for lpopf

22 - LPC_MAX_IT, 400 maximum number of iterations for lpopf

23 - LPC_MAX_RESTART, 5 maximum number of restarts for lpopf

24 - OPF_FLOW_LIM, 0 qty to limit for branch flow constraints

[0 - apparent power flow (limit in MVA)]

[1 - active power flow (limit in MW)]

[2 - current magnitude (limit in MVA at 1 p.u. voltage]

25 - OPF_IGNORE_ANG_LIM, 0 ignore angle difference limits for branches

even if specified [0 or 1]

26 - OPF_ALG_DC, 0 solver to use for DC OPF

[0 - choose default solver from available solvers in]

[the following order, 100, 200]

[100 - BPMPD_MEX]

[200 - PDIPM (pure Matlab), primal/dual interior pt method]

[250 - SCPDIPM (pure Matlab), step-controlled PDIPM]

[300 - Optimization Tbx, quadprog(), linprog()]

output options

31 - VERBOSE, 1 amount of progress info printed

[0 - print no progress info]

[1 - print a little progress info]

[2 - print a lot of progress info]

[3 - print all progress info]

32 - OUT_ALL, -1 controls printing of results

[-1 - individual flags control what prints]

[0 - don't print anything]

[(overrides individual flags, except OUT_RAW)]

[1 - print everything]

[(overrides individual flags, except OUT_RAW)]

33 - OUT_SYS_SUM, 1 print system summary [0 or 1]

34 - OUT_AREA_SUM, 0 print area summaries [0 or 1]

35 - OUT_BUS, 1 print bus detail [0 or 1]

39

— DRAFT —

36 - OUT_BRANCH, 1 print branch detail [0 or 1]

37 - OUT_GEN, 0 print generator detail [0 or 1]

(OUT_BUS also includes gen info)

38 - OUT_ALL_LIM, -1 control constraint info output

[-1 - individual flags control what constraint info prints]

[0 - no constraint info (overrides individual flags)]

[1 - binding constraint info (overrides individual flags)]

[2 - all constraint info (overrides individual flags)]

39 - OUT_V_LIM, 1 control output of voltage limit info

[0 - don't print]

[1 - print binding constraints only]

[2 - print all constraints]

[(same options for OUT_LINE_LIM, OUT_PG_LIM, OUT_QG_LIM)]

40 - OUT_LINE_LIM, 1 control output of line limit info

41 - OUT_PG_LIM, 1 control output of gen P limit info

42 - OUT_QG_LIM, 1 control output of gen Q limit info

43 - OUT_RAW, 0 print raw data for Perl database

interface code [0 or 1]

other options

51 - SPARSE_QP, 1 pass sparse matrices to QP and LP

solvers if possible [0 or 1]

fmincon options

55 - FMC_ALG, 1 algorithm used by fmincon for OPF

for Optimization Toolbox 4 and later

[1 - active-set]

[2 - interior-point, w/default 'bfgs' Hessian approx]

[3 - interior-point, w/ 'lbfgs' Hessian approx]

[4 - interior-point, w/exact user-supplied Hessian]

[5 - interior-point, w/Hessian via finite differences]

MINOPF options

61 - MNS_FEASTOL, 0 (1E-3) primal feasibility tolerance,

set to value of OPF_VIOLATION by default

62 - MNS_ROWTOL, 0 (1E-3) row tolerance

set to value of OPF_VIOLATION by default

63 - MNS_XTOL, 0 (1E-3) x tolerance

set to value of CONSTR_TOL_X by default

64 - MNS_MAJDAMP, 0 (0.5) major damping parameter

65 - MNS_MINDAMP, 0 (2.0) minor damping parameter

66 - MNS_PENALTY_PARM, 0 (1.0) penalty parameter

67 - MNS_MAJOR_IT, 0 (200) major iterations

68 - MNS_MINOR_IT, 0 (2500) minor iterations

69 - MNS_MAX_IT, 0 (2500) iterations limit

70 - MNS_VERBOSITY, -1

[-1 - controlled by VERBOSE flag]

[0 - print nothing]

40

— DRAFT —

[1 - print only termination status message]

[2 - print termination status and screen progress]

[3 - print screen progress, report file (usually fort.9)]

71 - MNS_CORE, 1200 * nb + 2 * (nb + ng)^2

72 - MNS_SUPBASIC_LIM, 0 (2*nb + 2*ng) superbasics limit

73 - MNS_MULT_PRICE, 0 (30) multiple price

PDIPM, SC-PDIPM, and TRALM options

81 - PDIPM_FEASTOL, 0 feasibility (equality) tolerance for

PDIPM and SC-PDIPM

set to value of OPF_VIOLATION by default

82 - PDIPM_GRADTOL, 1e-6 gradient tolerance for PDIPM

and SC-PDIPM

83 - PDIPM_COMPTOL, 1e-6 complementary condition (inequality)

tolerance for PDIPM and SC-PDIPM

84 - PDIPM_COSTTOL, 1e-6 optimality tolerance for PDIPM and

SC-PDIPM

85 - PDIPM_MAX_IT, 150 maximum number of iterations for

PDIPM and SC-PDIPM

86 - SCPDIPM_RED_IT, 20 maximum number of SC-PDIPM reductions

per iteration

87 - TRALM_FEASTOL, 0 feasibility tolerance for TRALM

set to value of OPF_VIOLATION by default

88 - TRALM_PRIMETOL, 5e-4 prime variable tolerance for TRALM

89 - TRALM_DUALTOL, 5e-4 dual variable tolerance for TRALM

90 - TRALM_COSTTOL, 1e-5 optimality tolerance for TRALM

91 - TRALM_MAJOR_IT, 40 maximum number of major iterations

92 - TRALM_MINOR_IT, 100 maximum number of minor iterations

93 - SMOOTHING_RATIO, 0.04 piecewise linear curve smoothing ratio

used in SC-PDIPM and TRALM

A typical usage of the options vector might be as follows: Get the default options
vector:

>> opt = mpoption;

Use the fast-decoupled method to solve power flow:

>> opt = mpoption(opt, 'PF_ALG', 2);

Display only system summary and generator info:

>> opt = mpoption(opt, 'OUT_BUS', 0, 'OUT_BRANCH', 0, 'OUT_GEN', 1);

41

— DRAFT —

Show all progress info:

>> opt = mpoption(opt, 'VERBOSE', 3);

Now, run a bunch of power flows using these settings:

>> runpf('case57', opt)

>> runpf('case118', opt)

>> runpf('case300', opt)

42

— DRAFT —

Appendix C Summary of Matpower Functions

This appendix lists the all of the functions that Matpower provides. In most cases,
the function is found in a Matlab M-file of the same name in the top-level of the
distribution and the .m extension is omitted from this listing.

Table 3: Top-Level Simulation Functions

name description

runpf power flowa

runopf optimal power flowa

runuopf optimal power flow with unit-decommitmenta

rundcpf DC power flowb

rundcopf DC optimal power flowb

runduopf DC optimal power flow with unit-decommitmentb

runopf w res optimal power flow with fixed reserve requirementsa

a Uses AC model by default.
b Simple wrapper function to set option to use DC model before

calling the corresponding general function above.

43

— DRAFT —

Table 4: Example Cases

name description

caseformat help file documenting Matpower case format
case ieee30 IEEE 30-bus case
case24 ieee rts IEEE RTS 24-bus case
case4gs 4-bus example case from Grainger & Stevenson
case6ww 6-bus example case from Wood & Wollenberg
case9 9-bus example case from Chow
case9Q case9 with reactive power costs
case14 IEEE 14-bus case
case30 30-bus case, based on IEEE 30-bus case
case30pwl case30 with piecewise linear costs
case30Q case30 with reactive power costs
case39 39-bus New England case
case57 IEEE 57-bus case
case118 IEEE 118-bus case
case300 IEEE 300-bus case
case2383wp Polish system - winter 1999-2000 peak
case2736sp Polish system - summer 2004 peak
case2737sop Polish system - summer 2004 off-peak
case2746wop Polish system - winter 2003-04 off-peak
case2746wp Polish system - winter 2003-04 evening peak

Table 5: Input/Output Functions

name description

cdf2matp converts data from IEEE Common Data Format to Mat-
power format

loadcase loads data from a case file or struct into data matrices or
a Matpower case struct

mpoption

printpf

savecase

44

— DRAFT —

Table 6: Power Flow Functions

name description

dcpf DC power flow implementation
fdpf fast-decoupled power flow implementation
gausspf Gauss-Seidel power flow implementation
newtonpf Newton-method power flow implmementation
pfsoln Computes branch flows, generator reactive power (and

real power for slack bus). Updates bus, gen, branch ma-
trices with solved values.

Table 7: OPF Model Object

name description

@opf model/

addconstraints

add costs

add vars

build cost params

display

get cost params

get idx

get lin N

get mpc

get nln N

get var N

get

getv

linear constraints

opf model

userdata

45

— DRAFT —

Table 8: OPF and Wrap-
per Functions

name description

dcopf

fmincopf

opf

uopf

Table 9: OPF Solver Functions

name description

copf solver*

dcopf solver

fmincopf solver

fmincopf6 solver*

lpopf solver*

pdipm solver

pdipm6 solver*

* Deprecated. Will be removed
in a subsequent version.

46

— DRAFT —

Table 10: Other OPF Func-
tions

name description

consfmin

costfmin

fun copf*

grad copf*

hessfmin

LPconstr*

LPeqslvr*

LPrelax*

LPsetup*

makeAang

makeApq

makeAvl

makeAy

opf args

totcost

update mupq

* Deprecated. Will be re-
moved in a subsequent
version.

Table 11: OPF User Callback
Functions

name description

add userfcn

remove userfcn

run userfcn

toggle iflims

toggle reserves

47

— DRAFT —

Table 12: Power Flow
Derivative Functions

name description

d2AIbr dV2

d2ASbr dV2

d2Ibr dV2

d2Sbr dV2

d2Sbus dV2

dAbr dV

dIbr dV

dSbr dV

dSbus dV

Table 13: NLP, LP & QP
Solver Functions

name description

bpmpd qp

mp lp

mp qp

pdipm

pdipm6*

pdipm qp

pdipm6 qp*

* Deprecated. Will be
removed in a subse-
quent version.

48

— DRAFT —

Table 14: Matrix Build-
ing Functions

name description

makeB

makeBdc

makeLODF

makePTDF

makeSbus

makeYbus

Table 15: Conversion Func-
tions

name description

ext2int

int2ext

get reorder

set reorder

49

— DRAFT —

Table 16: Utility Functions

name description

bustypes

compare case

define constants

fairmax

hasPQcap

have fcn

idx area

idx brch

idx bus

idx cost

idx gen

isload

mpver

poly2pwl

polycost

pqcost

scale load

total load

50

— DRAFT —

C.1 Automated Test Suite

Table 17: Test Utility Func-
tions

name description

t/

t begin

t end

t is

t ok

t run tests

t skip

Table 18: Test Data

name description

t/

soln9 dcopf.mat

soln9 dcpf.mat

soln9 opf ang.mat

soln9 opf extras1.mat

soln9 opf Plim.mat

soln9 opf PQcap.mat

soln9 opf.mat

soln9 pf.mat

t case ext.m

t case int.m

t case9 opf.m

t case9 opfv2.m

t case9 pf.m

t case9 pfv2.m

t case30 userfcns.m

51

— DRAFT —

Table 19: Matpower Tests

name description

t/

t auction case

t auction fmincopf

t auction minopf

t auction pdipm

t auction tspopf pdipm

t ext2int2ext

t hasPQcap

t hessian

t jacobian

t loadcase

t makeLODF

t makePTDF

t off2case

t opf constr*

t opf dc bpmpd

t opf dc ot

t opf dc pdipm

t opf dc scpdipm

t opf fmincon

t opf lp den*

t opf lp spf*

t opf lp spr*

t opf minopf

t opf pdipm

t opf scpdipm

t opf tspopf pdipm

t opf tspopf scpdipm

t opf tspopf tralm

t opf userfcns

t pf

t runmarket

t runopf w res

t scale load

t total load

test matpower

* Deprecated. Will be removed in a sub-
sequent version.

52

— DRAFT —

Appendix D Extras Directory

$MATPOWER/t Test scripts that can be used to verify that Matpower is
installed and working correctly (type test matpower at the
Matlab prompt).

$MATPOWER/extras/smartmarket
Code that implements a “smart market” auction clearing
mechanism based on Matpower’s optimal power flow solver.
See Appendix E for details.

$MATPOWER/extras/state estimator
Example state estimation code.

$MATPOWER/extras/se State-estimation code contributed by Rui Bo. Type test se

to run an example.

$MATPOWER/extras/cpf Continuation power flow code contributed by Rui Bo. Type
test cpf to run an example.

53

— DRAFT —

Appendix E Auctions Code

Matpower 3 and later includes in the extras/smartmarket directory code that
implements a “smart market” auction clearing mechanism. The purpose of this code
is to take a set of offers to sell and bids to buy and use Matpower’s optimal
power flow to compute the corresponding allocations and prices. It has been used
extensively by the authors with the optional MINOPF package [15] in the context of
PowerWeb8 but has not been widely tested in other contexts.

The smart market algorithm consists of the following basic steps:

1. Convert block offers and bids into corresponding generator capacities and costs.

2. Run an optimal power flow with decommitment option (uopf) to find generator
allocations and nodal prices (λP).

3. Convert generator allocations and nodal prices into set of cleared offers and
bids.

4. Print results.

For step 1, the offers and bids are supplied as two structs, offers and bids,
each with fields P for real power and Q for reactive power (optional). Each of these
is also a struct with matrix fields qty and prc, where the element in the i-th row
and j-th column of qty and prc are the quantity and price, respectively of the j-th
block of capacity being offered/bid by the i-th generator. These block offers/bids are
converted to the equivalent piecewise linear generator costs and generator capacity
limits by the off2case function. See help off2case for more information.

Offer blocks must be in non-decreasing order of price and the offer must cor-
respond to a generator with 0 ≤ PMIN < PMAX. A set of price limits can be speci-
fied via the lim struct, e.g. and offer price cap on real energy would be stored in
lim.P.max offer. Capacity offered above this price is considered to be withheld from
the auction and is not included in the cost function produced. Bids must be in non-
increasing order of price and correspond to a generator with PMIN < PMAX ≤ 0 (see
Section 5.4.2 on page 27). A lower limit can be set for bids in lim.P.min bid. See
help pricelimits for more information.

The data specified by a Matpower case file, with the gen and gencost matrices
modified according to step 1, are then used to run an OPF. A decommitment mech-
anism is used to shut down generators if doing so results in a smaller overall system
cost (see Section 6).

8See http://www.pserc.cornell.edu/powerweb/.

54

http://www.pserc.cornell.edu/powerweb/

— DRAFT —

In step 3 the OPF solution is used to determine for each offer/bid block, how
much was cleared and at what price. These values are returned in co and cb, which
have the same structure as offers and bids. The mkt parameter is a struct used to
specify a number of things about the market, including the type of auction to use,
type of OPF (AC or DC) to use and the price limits.

There are two basic types of pricing options available through mkt.auction type,
discriminative pricing and uniform pricing. The various uniform pricing options are
best explained in the context of an unconstrained lossless network. In this context,
the allocation is identical to what one would get by creating bid and offer stacks
and finding the intersection point. The nodal prices (λP) computed by the OPF
and returned in bus(:,LAM P) are all equal to the price of the marginal block. This
is either the last accepted offer (LAO) or the last accepted bid (LAB), depending
which is the marginal block (i.e. the one that is split by intersection of the offer and
bid stacks). There is often a gap between the last accepted bid and the last accepted
offer. Since any price within this range is acceptable to all buyers and sellers, we end
up with a number of options for how to set the price, as listed in Table 20.

Table 20: Auction Types

Auction Type Name Description

0 discriminative The price of each cleared offer (bid) is equal
to the offered (bid) price.

1 LAO Uniform price equal to the last accepted offer.
2 FRO Uniform price equal to the first rejected offer.
3 LAB Uniform price equal to the last accepted bid.
4 FRB Uniform price equal to the first rejected bid.
5 first price Uniform price equal to the offer/bid price of

the marginal unit.
6 second price Uniform price equal to min(FRO, LAB) if the

marginal unit is an offer, or max(FRB, LAO)
if it is a bid.

7 split-the-difference Uniform price equal to the average of the LAO
and LAB.

8 dual LAOB Uniform price for sellers equal to LAO, for
buyers equal to LAB.

Generalizing to a network with possible losses and congestion results in nodal
prices λP which vary according to location. These λP values can be used to normalize

55

— DRAFT —

all bids and offers to a reference location by adding a locational adjustment. For bids
and offers at bus i, the adjustment is λref

P − λiP , where λref
P is the nodal price at the

reference bus. The desired uniform pricing rule can then be applied to the adjusted
offers and bids to get the appropriate uniform price at the reference bus. This
uniform price is then adjusted for location by subtracting the locational adjustment.
The appropriate locationally adjusted uniform price is then used for all cleared bids
and offers.9

There are certain circumstances under which the price of a cleared offer deter-
mined by the above procedures can be less than the original offer price, such as
when a generator is dispatched at its minimum generation limit, or greater than
the price cap lim.P.max cleared offer. For this reason, all cleared offer prices are
clipped to be greater than or equal to the offer price but less than or equal to
lim.P.max cleared offer. Likewise, cleared bid prices are less than or equal to the
bid price but greater than or equal to lim.P.min cleared bid.

E.1 Handling Supply Shortfall

In single sided markets, in order to handle situations where the offered capacity is
insufficient to meet the demand under all of the other constraints, resulting in an
infeasible OPF, we introduce the concept of emergency imports. We model an import
as a fixed injection together with an equally sized dispatchable load which is bid in
at a high price. Under normal circumstances, the two cancel each other and have
no effect on the solution. Under supply shortage situations, the dispatchable load is
not fully dispatched, resulting in a net injection at the bus, mimicking an import.
When used in conjunction with the LAO pricing rule, the marginal load bid will not
set the price if all offered capacity can be used.

9Since this code was initially written, we realized it has a problem that has not yet been corrected.
While it is true that the adjusted prices resulting from this technique do fall within the “gap”
between the last accepted offer and last accepted bid, they do not necessarily correspond to the
optimal solution to the OPF. The correct procedure involves multiplying or dividing by locational
scale factors as opposed to adding or subtracting the locational adjustment values described here.
Multiplying all prices in an OPF solution by a single scale factor is equivalent to simply changing
the units used to measure the cost and therefore corresponds to the same optimal solution to the
OPF. In light of this, the only auction types we recommend using are 0 and 5, since neither requires
use of the locational adjustments described. The former simply uses the bid and offer prices and
the latter, the nodal prices directly from the OPF solution.

56

— DRAFT —

E.2 Example

Six generators with three blocks of capacity each, offering as follows:

Table 21: Generator Offers

Generator Block 1 Block 2 Block 3
MW @ $/MWh MW @ $/MWh MW @ $/MWh

1 12 @ $20 24 @ $50 24 @ $60
2 12 @ $20 24 @ $40 24 @ $70
3 12 @ $20 24 @ $42 24 @ $80
4 12 @ $20 24 @ $44 24 @ $90
5 12 @ $20 24 @ $46 24 @ $75
6 12 @ $20 24 @ $48 24 @ $60

Fixed load totaling 151.64 MW. Three dispatchable loads, bidding three blocks
each as follows:

Table 22: Load Bids

Load Block 1 Block 2 Block 3
MW @ $/MWh MW @ $/MWh MW @ $/MWh

1 10 @ $100 10 @ $70 10 @ $60
2 10 @ $100 10 @ $50 10 @ $20
3 10 @ $100 10 @ $60 10 @ $50

The case file t/t auction case.m, used for this example, is a modified version of
the 30-bus system that has 9 generators, where the last three have negative PMIN to
model the dispatchable loads.

To solve this case using an AC optimal power flow and a last accepted offer (LAO)
pricing rule, we use:

mkt.OPF = 'AC';
mkt.auction_type = 1;

and set up the problem as follows:

offers.P.qty = [...

12 24 24;

57

— DRAFT —

12 24 24;

12 24 24;

12 24 24;

12 24 24;

12 24 24];

offers.P.prc = [...

20 50 60;

20 40 70;

20 42 80;

20 44 90;

20 46 75;

20 48 60];

bids.P.qty = [...

10 10 10;

10 10 10;

10 10 10];

bids.P.prc = [...

100 70 60;

100 50 20;

100 60 50];

[mpc_out, co, cb, f, dispatch, success, et] = runmarket(mpc, offers, bids, mkt);

The resulting cleared offers and bids are:

>> co.P.qty

ans =

12.0000 23.3156 0

12.0000 24.0000 0

12.0000 24.0000 0

12.0000 24.0000 0

12.0000 24.0000 0

12.0000 24.0000 0

>> co.P.prc

ans =

50.0000 50.0000 50.0000

50.2406 50.2406 50.2406

50.3368 50.3368 50.3368

58

— DRAFT —

51.0242 51.0242 51.0242

52.1697 52.1697 52.1697

52.9832 52.9832 52.9832

>> cb.P.qty

ans =

10.0000 10.0000 10.0000

10.0000 0 0

10.0000 10.0000 0

>> cb.P.prc

ans =

51.8207 51.8207 51.8207

54.0312 54.0312 54.0312

55.6208 55.6208 55.6208

In other words, the sales by generators and purchases by loads are as shown
summarized in Tables 23 and Tables 24, respectively.

Table 23: Generator Sales

Generator Quantity Sold Selling Price
MW $/MWh

1 35.3 $50.00
2 36.0 $50.24
3 36.0 $50.34
4 36.0 $51.02
5 36.0 $52.17
6 36.0 $52.98

59

— DRAFT —

Table 24: Load Purchases

Load Quantity Bought Purchase Price
MW $/MWh

1 30.0 $51.82
2 10.0 $54.03
3 20.0 $55.62

60

— DRAFT —

References

[1] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower:
Steady-State Operations, Planning and Analysis Tools for Power Systems Re-
search and Education,” submitted to IEEE Transactions on Power Systems

[2] F. Milano, “An open source power system analysis toolbox,” Power Systems,
IEEE Transactions on, vol. 20, no. 3, pp. 1199–1206, Aug. 2005.

[3] W. F. Tinney and C. E. Hart, “Power flow solution by Newton’s method,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-86, no. 11, pp.
1449–1460, November 1967.

[4] B. Stott and O. Alsaç, “Fast decoupled load flow,” IEEE Transactions on Power
Apparatus and Systems, vol. PAS-93, no. 3, pp. 859–869, May 1974.

[5] R. A. M. van Amerongen, “A general-purpose version of the fast decoupled load
flow,” Power Systems, IEEE Transactions on, vol. 4, no. 2, pp. 760–770, May
1989.

[6] A. F. Glimm and G. W. Stagg, “Automatic calculation of load flows,” AIEE
Transactions (Power Apparatus and Systems), vol. 76, pp. 817–828, October
1957.

[7] A. J. Wood and B. F. Wollenberg, Power generation, operation, and control,
2nd ed. New York: J. Wiley & Sons, 1996.

[8] T. Guler, G. Gross, and M. Liu, “Generalized line outage distribution factors,”
Power Systems, IEEE Transactions on, vol. 22, no. 2, pp. 879–881, May 2007.

[9] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower’s
extensible optimal power flow architecture,” Power and Energy Society General
Meeting, 2009 IEEE, pp. 1–7, July 26–30 2009.

[10] TSPOPF: [Online]. Available: http://www.pserc.cornell.edu/tspopf/

[11] H. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas, “On
computational issues of market-based optimal power flow,” Power Systems,
IEEE Transactions on, vol. 22, no. 3, pp. 1185–1193, August 2007.

[12] Optimization Toolbox 4 Users’s Guide. The MathWorks, Inc., 2008. [On-
line]. Available: http://www.mathworks.com/access/helpdesk/help/pdf_

doc/optim/optim_tb.pdf

61

http://www.pserc.cornell.edu/tspopf/
http://www.mathworks.com/access/helpdesk/help/pdf_doc/optim/optim_tb.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/optim/optim_tb.pdf

— DRAFT —

[13] BPMPD MEX: [Online]. Available: http://www.pserc.cornell.edu/bpmpd/

[14] C. Mészáros, “The efficient implementation of interior point methods for lin-
ear programming and their applications,” Ph.D. dissertation, Eötvös Loránd
University of Sciences, 1996.

[15] MINOPF: [Online]. Available: http://www.pserc.cornell.edu/minopf/

[16] B. A. Murtagh and M. A. Saunders, MINOS 5.5 User’s Guide, Stanford Uni-
versity Systems Optimization Laboratory Technical Report SOL83-20R.

62

http://www.pserc.cornell.edu/bpmpd/
http://www.pserc.cornell.edu/minopf/

	Introduction
	What is Matpower?
	Where did it come from?
	Who may use it?

	Getting Started
	System Requirements
	Installation
	Running a Simulation
	Preparing Case Input Data
	Solving the Case
	Accessing the Results
	Setting Options

	Documentation

	Modeling
	Data Formats
	Branches
	Generators
	Loads
	Shunt Elements
	Network Equations
	DC Modeling

	Power Flow
	AC Power Flow
	DC Power Flow
	runpf
	Linear Shift Factors

	Optimal Power Flow
	Standard AC OPF
	Standard DC OPF
	Extended OPF Formulation
	User-defined Costs
	User-defined Constraints
	User-defined Variables

	Standard Extensions
	Piecewise Linear Costs
	Dispatchable Loads
	Generator Capability Curves
	Branch Angle Difference Limits

	Solvers
	runopf

	Unit De-commitment Algorithm
	Acknowledgments
	Appendix Data File Format
	Appendix Matpower Options
	Appendix Summary of Matpower Functions
	Automated Test Suite

	Appendix Extras Directory
	Appendix Auctions Code
	Handling Supply Shortfall
	Example

	References

