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1 Introduction
What is MATPOWER?

MATPOWER is a package of Matlab m-files for solving power flow and optimal power flow problems. It
is intended as a simulation tool for researchers and educators that is easy to use and modify.
MATPOWER is designed to give the best performance possible while keeping the code simple to under-
stand and modify. The MATPOWER home page can be found at:

http://www.pserc.cornell.edu/matpower/

Where did it come from?

MATPOWER was developed by Ray D. Zimmerman, Carlos E. Murillo-Sánchez  and Deqiang Gan of
PSERC at Cornell University (http://www.pserc.cornell.edu/) under the direction of Robert Thomas. The
initial need for Matlab based power flow and optimal power flow code was born out of the computational
requirements of the PowerWeb project (see http://www.pserc.cornell.edu/powerweb/).

Who can use it?

• MATPOWER is free. Anyone may use it.
• We make no warranties, express or implied. Specifically, we make no guarantees regarding the

correctness MATPOWER’s code or its fitness for any particular purpose.
•  Any publications derived from the use of MATPOWER  must cite MATPOWER

http://www.pserc.cornell.edu/matpower/.
• Anyone may modify MATPOWER for their own use as long as the original copyright notices

remain in place.
• MATPOWER may not be redistributed without written permission.
• Modified versions of MATPOWER, or works derived from MATPOWER, may not be distributed

without written permission.

2 Getting Started

2.1 System Requirements
To use MATPOWER you will need:
• Matlab version 5 or later1

• Matlab Optimization Toolbox (required only for some OPF algorithms)
Both are available from The MathWorks2.

                                                
1 MATPOWER 2.0 and earlier required only version 4 of Matlab.
2 See    http://www.mathworks.com/   .
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2.2 Installation
Step 1: Go to the MATPOWER home page3 and follow the download instructions.
Step 2: Unzip the downloaded file.
Step 3: Place the files in a location in your Matlab path.

2.3 Running a Power Flow

To run a simple Newton power flow on the 9-bus system specified in the file case9.m, with the default
algorithm options, at the Matlab prompt, type:
>> runpf('case9')

2.4 Running an Optimal Power Flow

To run an optimal power flow on the 30-bus system whose data is in case30.m, with the default algo-
rithm options, at the Matlab prompt, type:
>> runopf('case30')

To run an optimal power flow on the same system, but with the option for MATPOWER to shut down
(decommit) expensive generators, type:
>> runuopf('case30')

2.5 Getting Help

As with Matlab’s built-in functions and toolbox routines, you can type help followed by the name of a
command or m-file to get help on that particular function. Nearly all of MATPOWER’s m-files have such
documentation. For example, the help for runopf looks like:

>> help runopf

 RUNOPF  Runs an optimal power flow.

    [baseMVA, bus, gen, gencost, branch, f, success, et] = ...
            runopf(casename, mpopt, fname, solvedcase)

    Runs an optimal power flow and optionally returns the solved values in
    the data matrices, the objective function value, a flag which is true if
    the algorithm was successful in finding a solution, and the elapsed time
    in seconds. All input arguments are optional. If casename is provided it
    specifies the name of the input data file or struct (see also 'help
    caseformat' and 'help loadcase') containing the opf data. The default
    value is 'case9'. If the mpopt is provided it overrides the default
    MATPOWER options vector and can be used to specify the solution
    algorithm and output options among other things (see 'help mpoption' for
    details). If the 3rd argument is given the pretty printed output will be
    appended to the file whose name is given in fname. If solvedcase is
    specified the solved case will be written to a case file in MATPOWER
    format with the specified name. If solvedcase ends with '.mat' it saves
                                                
3    http://www.pserc.cornell.edu/matpower/   
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    the case as a MAT-file otherwise it saves it as an M-file.

MATPOWER also has many options which control the algorithms and the output. Type:
>> help mpoption

and see Section 3.5 for more information on MATPOWER's options.

3 Technical Reference

3.1 Data File Format
The data files used by MATPOWER are simply Matlab M-files or MAT-files which define and return the
variables baseMVA, bus, branch, gen, areas, and gencost. The bus, branch, and gen variables are matrices.
Each row in the matrix corresponds to a single bus, branch, or generator, respectively. The columns are
similar to the columns in the standard IEEE and PTI formats. The details of the specification of the
MATPOWER case file can be found in the help for caseformat.m:

>> help caseformat

 CASEFORMAT    Defines the MATPOWER case file format.
    A MATPOWER case file is an M-file or MAT-file which defines the variables
    baseMVA, bus, gen, branch, areas, and gencost. The format of the data is
    similar to PTI format except where noted. An item marked with (+) indicates
    that it is included in this data but is not part of the PTI format. An item
    marked with (-) is one that is in the PTI format but is not included here.

    Bus Data Format
        1   bus number (1 to 29997)
        2   bus type
                PQ bus          = 1
                PV bus          = 2
                reference bus   = 3
                isolated bus    = 4
        3   Pd, real power demand (MW)
        4   Qd, reactive power demand (MVAr)
        5   Gs, shunt conductance (MW (demanded) at V = 1.0 p.u.)
        6   Bs, shunt susceptance (MVAr (injected) at V = 1.0 p.u.)
        7   area number, 1-100
        8   Vm, voltage magnitude (p.u.)
        9   Va, voltage angle (degrees)
    (-)     (bus name)
        10  baseKV, base voltage (kV)
        11  zone, loss zone (1-999)
    (+) 12  maxVm, maximum voltage magnitude (p.u.)
    (+) 13  minVm, minimum voltage magnitude (p.u.)

    Generator Data Format
        1   bus number
    (-)     (machine identifier, 0-9, A-Z)
        2   Pg, real power output (MW)
        3   Qg, reactive power output (MVAr)
        4   Qmax, maximum reactive power output (MVAr)
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        5   Qmin, minimum reactive power output (MVAr)
        6   Vg, voltage magnitude setpoint (p.u.)
    (-)     (remote controlled bus index)
        7   mBase, total MVA base of this machine, defaults to baseMVA
    (-)     (machine impedance, p.u. on mBase)
    (-)     (step up transformer impedance, p.u. on mBase)
    (-)     (step up transformer off nominal turns ratio)
        8   status,  >  0 - machine in service
                     <= 0 - machine out of service
    (-)     (% of total VAr's to come from this gen in order to hold V at
                remote bus controlled by several generators)
        9   Pmax, maximum real power output (MW)
        10  Pmin, minimum real power output (MW)

    Branch Data Format
        1   f, from bus number
        2   t, to bus number
    (-)     (circuit identifier)
        3   r, resistance (p.u.)
        4   x, reactance (p.u.)
        5   b, total line charging susceptance (p.u.)
        6   rateA, MVA rating A (long term rating)
        7   rateB, MVA rating B (short term rating)
        8   rateC, MVA rating C (emergency rating)
        9   ratio, transformer off nominal turns ratio ( = 0 for lines )
            (taps at 'from' bus, impedance at 'to' bus, i.e. ratio = Vf / Vt)
        10  angle, transformer phase shift angle (degrees)
    (-)     (Gf, shunt conductance at from bus p.u.)
    (-)     (Bf, shunt susceptance at from bus p.u.)
    (-)     (Gt, shunt conductance at to bus p.u.)
    (-)     (Bt, shunt susceptance at to bus p.u.)
        11  initial branch status, 1 - in service, 0 - out of service

  (+) Area Data Format
        1   i, area number
        2   price_ref_bus, reference bus for that area
 
  (+) Generator Cost Data Format
        NOTE: If gen has n rows, then the first n rows of gencost contain
        the cost for active power produced by the corresponding generators.
        If gencost has 2*n rows then rows n+1 to 2*n contain the reactive
        power costs in the same format.
        1   model, 1 - piecewise linear, 2 - polynomial
        2   startup, startup cost in US dollars
        3   shutdown, shutdown cost in US dollars
        4   n, number of cost coefficients to follow for polynomial
            (or data points for piecewise linear) total cost function
        5 and following, cost data, piecewise linear data as:
                    x0, y0, x1, y1, x2, y2, ...
            and polynomial data as, e.g.:
                    c2, c1, c0
            where the polynomial is c0 + c1*P + c2*P^2
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3.2 Power Flow
MATPOWER has five power flow solvers. The default power flow solver is based on a standard New-
ton’s method [12] using a full Jacobian, updated at each iteration. This method is described in detail in
many textbooks. Algorithms 2 and 3 are variations of the fast-decoupled method [10]. MATPOWER im-
plements the XB and BX variations as described in [1]. Algorithm 4 is the standard Gauss-Seidel method
from Glimm and Stagg [5], based on code contributed by Alberto Borghetti, from the University of Bo-
logna, Italy. The last method is a direct DC power flow [13].
Currently, none of MATPOWER’s power flow solvers include any transformer tap changing or feasibil-
ity checking capabilities.
Performance of the power flow solvers should be excellent even on very large-scale power systems, since
the algorithms and implementation take advantage of Matlab’s built-in sparse matrix handling.

3.3 Optimal Power Flow
MATPOWER includes several solvers for the optimal power flow (OPF) problem. The (chronologically)
first is based on the constr function included in earlier versions of Matlab’s Optimization Toolbox,
which uses a successive quadratic programming technique with a quasi-Newton approximation for the
Hessian matrix. The second approach is based on linear programming. It can use the LP solver in the
Optimization Toolbox or other Matlab LP solvers available from third parties.  Version 3 of
MATPOWER has a new generalized OPF formulation that allows general linear constraints on the opti-
mization variables, but requires fmincon.m found in Matlab’s Optimization Toolbox 2.0 or later, or the
MINOS [14] based MEX file offered separately at http://www.pserc.cornell.edu/minopf/ , but with a
more restrictive license than that for MATPOWER.
The performance of MATPOWER’s OPF solvers depends on several factors. First, the constr function
uses an algorithm which does not exploit or preserve sparsity, so it is inherently limited to small power
systems. The same is still true for the combination of parameters required to be able to employ the newer
fmincon function. The LP-based algorithm, on the other hand, does preserve sparsity. However, the
LP-solver included in the older Optimization Toolbox does not exploit this sparsity. In fact, the LP-based
method with the old LP solver performs worse than the constr-based method, even on small systems.
Fortunately, there are LP-solvers available from third parties which do exploit sparsity. In general, these
yield much higher performance. One in particular, called BPMPD [8] (actually a QP-solver), has proven
to be robust and efficient. Even the constr or fmincon-based methods, when tricked into calling
BPMPD with full matrix data instead of the older qp.m, become much faster.
It should be noted, however, that even with a good LP-solver, MATPOWER’s LP-based OPF solver, un-
like it’s power flow solver, is not suitable for very-large scale problems. Substantial improvements in per-
formance may still be possible, though they may require significantly more complicated coding and pos-
sibly a custom LP-solver. On a Sun Ultra 2200 (dual 200MHz cpu), the LP-based OPF solver using
bpmpd solves a 30-bus system in under 4 seconds and a  118-bus case in under 25 seconds. However,
when speed is of the essence, the preferred choice is the MINOS-based MEX file solver; assuming that
its licensing requirements can be met.  It is coded in FORTRAN and evaluates the required Jacobians
using an optimized structure that follows the order of evaluation imposed by the compressed-column
sparse format which is employed by MINOS.  In fact, the new generalized formulation introduced in this
version of MATPOWER is inspired by the data format used by MINOS.

Traditional OPF Formulation
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The OPF problem solved by MATPOWER is a “smooth” OPF with no discrete variables or controls.
The objective function is the total cost of real and/or reactive generation. These costs may be defined as
polynomials or as piecewise-linear functions of generator output. The problem is formulated as follows:

min
Pg,Qg

f1i (Pgi ) + f2i (Qgi )∑

such that …
0),( =+− Ligi PPVP θ (active power balance equations)

0),( =+− Ligi QQVQ θ (reactive power balance equations)

max~
ij

f
ij SS ≤ (apparent power flow limit of lines, from side)

max~
ij

t
ij SS ≤ (apparent power flow limit of lines, to side)

Vi
min ≤ Vi ≤ Vi

max (bus voltage limits)

Pgi
min ≤ Pgi ≤ Pgi

max (active power generation limits)

Qgi
min ≤ Qgi ≤ Qgi

max (reactive power generation limits)

Here f1i and f2i are the costs of active and reactive power generation, respectively, for generator i at a given
dispatch point. Both f1i and f2i are assumed to be polynomial or piecewise-linear functions.

Optimization Toolbox Based OPF Solver (constr)

The first of the two OPF solvers in MATPOWER is based on the constr non-linear constrained optimi-
zation function in Matlab’s Optimization Toolbox. The constr function and the algorithms it uses are
covered in the older Optimization Toolbox manual [6]. MATPOWER provides constr with two m-files
which it uses during for the optimization. One computes the objective function, f, and the constraint viola-
tions, g, at a given point, x, and the other computes their gradients ∂f ∂x  and ∂g ∂x .
MATPOWER has two versions of these m-files. One set is used to solve systems with polynomial cost
functions. In this formulation, the cost functions are included in a straightforward way into the objective
function. The other set is used to solve systems with piecewise-linear costs. Piecewise-linear cost func-
tions are handled by introducing a cost variable for each piecewise-linear cost function. The objective
function is simply the sum of these cost variables which are then constrained to lie above each of the lin-
ear functions which make up the piecewise-linear cost function. Clearly, this method works only for con-
vex cost functions. In the MATPOWER documentation this will be referred to as a constrained cost vari-
able (CCV) formulation.
The algorithm codes 100 and 200, respectively, are used to identify the constr-based solver for polyno-
mial and piecewise-linear cost functions. If algorithm 200 is chosen for a system with polynomial cost
function, the cost function will be approximated by a piecewise-linear function by evaluating the polyno-
mial at a fixed number of points determined by the options vector (see Section 3.5 for more details on the
MATPOWER options).
It should be noted that the constr-based method can also benefit from a superior QP-solver such as
bpmpd. See Appendix A for more information on LP and QP-solvers.



9

LP-Based OPF Solver (LPconstr)

Linear programming based OPF methods are in wide use today in the industry. However, the LP-based
algorithm included in MATPOWER is much simpler than the algorithms used in production-grade soft-
ware.
The LP-based methods in MATPOWER use the same problem formulation as the constr-based meth-
ods, including the CCV formulation for the case of piecewise-linear costs. The compact form of the OPF
problem can be rewritten to partition g into equality and inequality constraints, and to partition the vari-
able x as follows:

min
x

f (x2 )

such that …
g1(x1,x2 ) = 0 (equality constraints)
g2 (x1, x2 ) ≤ 0 (inequality constraints)

where x1 contains the system voltage magnitudes and angles, and x2 contains the generator real and reac-
tive power outputs (and corresponding cost variables for the CCV formulation). This is a general non-
linear programming problem, with the additional assumption that the equality constraints can be used to
solve for x1, given a value for x2.
The LP-based OPF solver is implemented with a function LPconstr, which is similar to constr in that it
uses the same m-files for computing the objective function,  constraints, and their respective gradients. In
addition, a third m-file (lpeqslvr.m) is needed to solve for x1 from the equality constraints, given a value
for x2. This architecture makes it relatively simple to modify the formulation of the problem and still be
able to use both the constr-based and LP-based solvers.
The algorithm proceeds as follows, where the superscripts denote iteration number:
Step 0: Set iteration counter k ← 0  and choose an appropriate initial value, call it x2

0 , for x2.

Step 1: Solve the equality constraint (power flow) equations g1(x1
k, x2

k ) = 0  for x1
k .

Step 2: Linearize the problem around xk, solve the resulting LP for ∆x.

min
Δx

∂f
∂x x= x k

 

 
 

 

 
 ⋅ Δx

such that …
∂g
∂x x= x k

 

 
 

 

 
 ⋅ Δx ≤ −g(xk )

−Δ ≤ Δx ≤ Δ

Step 3: Set k ← k +1 , update current solution xk = xk−1 + Δx .
Step 4: If xk meets termination criteria, stop, otherwise go to step 5.
Step 5: Adjust step size limit ∆ based on the trust region algorithm in [3], go to step 1.
The termination criteria is outlined below:

∂L
∂x

=
∂f
∂x

+ λT ⋅
∂g
∂x

≤ tolerance1
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g(x) ≤ tolerance2
Δx ≤ tolerance3

Here λ  is the vector of Lagrange multipliers of the LP problem. The first condition pertains to the size of
the gradient, the second to the violation of constraints, and the third to the step size. More detail can be
found in [4].
Quite frequently, the value of xk given by step 1 is infeasible and could result in an infeasible LP problem.
In such cases, a slack variable is added for each violated constraint. These slack variables must be zero at
the optimal solution.
The LPconstr function implements the following three methods:

• sparse formulation with full set of inequality constraints
• sparse formulation with relaxed constraints (ICS, Iterative Constraint Search)
• dense formulation with relaxed constraints (ICS) [11]

These three methods are specified using algorithm codes 160, 140, and 120, respectively, for systems
with polynomial costs, and 260, 240, and 220, respectively, for systems with piecewise-linear costs. As
with the constr-based method, selecting one of the 2xx algorithms for a system with polynomial cost will
cause the cost to be replaced by a piecewise-linear approximation.
In the dense formulation, some of the variables x1 and the equality constraints g1 are eliminated from the
problem before posing the LP sub-problem. This procedure is outlined below. Suppose the LP sub-
problem is given by:

min  cT ⋅ Δx
such that …

A ⋅ Δx ≤ b
−Δ ≤ Δx ≤ Δ

If this is rewritten as:

min  c1
T ⋅ Δx1 + c2

T ⋅ Δx2

such that …
A11 ⋅ Δx1 + A12 ⋅ Δx2 = b1
A21 ⋅ Δx1 + A22 ⋅ Δx2 ≤ b2

−Δ ≤ Δx ≤ Δ
Where A1 1 is a square matrix, ∆x1 can be computed as:

Δx1 = A11
−1(b1 − A12Δx2 )

Substituting back in to the problem, yields a new LP problem:
min  -c1

T A11
−1A12 + c2

T( ) ⋅ Δx2

such that …
A11 ⋅ Δx1 + A12 ⋅ Δx2 = b1

A21 ⋅ A11
−1(b1 − A12Δx2 ) + A22 ⋅ Δx2 ≤ b2



11

−Δ1 ≤ A11
−1(b1 − A12Δx2 ) ≤ Δ1

−Δ2 ≤ Δx2 ≤ Δ2
This new LP problem is smaller than the original, but it is no longer sparse.
As mentioned above, to realize the full potential of the LP-based OPF solvers, it will be necessary to ob-
tain a good LP-solver, such as bpmpd. See Appendix A for more details.

Generalized Formulation and fmincon.m

The new generalized formulation used by the fmincon and MINOPF solvers can be written as follows:

















++∑
z

y

x

cQfPf giigii
QP gg

)()(min 21
,

such that …

0),()( =+−= LigiP PPVPxg θ (active power balance equations)

0),()( =+−= LigiQ QQVQxg θ (reactive power balance equations)

max~
ij

f
ij SS ≤ (apparent power flow limit of lines, from side)

max~
ij

t
ij SS ≤ (apparent power flow limit of lines, to side)

Vi
min ≤ Vi ≤ Vi

max (bus voltage limits)

Pgi
min ≤ Pgi ≤ Pgi

max (active power generation limits)

Qgi
min ≤ Qgi ≤ Qgi

max (reactive power generation limits)

u

z

y

x

Al ≤
















≤ (General linear constraints)

where





















=

g

g

Q

P

V
x

θ
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is the vector of standard optimization variables for the OPF and (y,z) are other variables to be explained
later. The ability to include the general linear constraints and the extra linear cost vector c allow easy
modeling for the CCV formulation of piece wise-linear costs and constant power factor price-sensitive
loads.  Furthermore, because the user is given the ability to specify all or part of A, l and u, it is possible
to pose additional constraints such as restriction of angle differences or linearly-interrelated injections,
making MATPOWER even more useful as a research tool.  The general formulation also allows generator
costs of mixed type (polynomial and piece wise-linear) in the same problem.  Note: at the time of release,
fmincon.m  seems to be providing slightly inaccurate shadow prices on the constraints. This did not hap-
pen with constr.m and it may be a bug in the optimization toolbox.

Problem Data Transformation and General Linear Restrictions

If the user wants to add general linear constraints of his or her own, it is necessary to understand the
standard transformations performed on the input data (bus, gen, branch, area and gencost tables) before
the problem is actually solved in order to know where the optimization variables end up in the x vector.
All of these transformations are reversed after solving the problem so that output data is in the right place
in the tables.

The first step filters out inactive generators and branches; original tables are saved for data output.

    comgen = find(gen(:,GEN_STATUS) > 0);        % Find online generators
    onbranch  = find(branch(:,BR_STATUS) ~= 0);  % Find online branches
    gen   = gen(comgen, :);
    branch = branch(onbranch, :);

The second step is a renumbering of the bus numbers in the bus table so that the resulting table contains
consecutively-numbered buses starting from 1:

    [i2e, bus, gen, branch, areas] = ext2int(bus, gen, branch, areas);

where i2e is saved for inverse reordering at the end.  Finally, generators are further reordered by bus
number:

    ng = size(gen,1);                 % number of generators or injections
    [tmp, igen] = sort(gen(:, GEN_BUS));
    [tmp, inv_gen_ord] = sort(igen);  % save for inverse reordering at the end
    gen  = gen(igen, :);
    if ng == size(gencost,1)          % This is because gencost might have
      gencost = gencost(igen, :);     % twice as many rows as gen if there
    else                              % are reactive injection costs.
      gencost = gencost( [igen; igen+ng], :);
    end

Having done this, the variables inside the x vector now have the same ordering as in the bus(), gen() ta-
bles:

 x = [  Theta ;    %  nb bus voltage angles
          V   ;    %  nb bus voltage magnitudes
          Pg  ;    %  ng active power injections (p.u.) (ascending bus order)
          Qg ];    %  ng reactive power injections (p.u.)(ascending bus order)

and the nonlinear constraints have the same order as in the bus(), branch() tables
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 g = [  gp ;       % nb real power flow mismatches (p.u.)
        gq;        % nb reactive power flow mismatches (p.u.)
        gsf;       % nl "From" end apparent power injection limits (p.u.)
        gst ];     % nl "To" end apparent power injection limits (p.u.)

With this setup, box bounds on the variables are applied as follows: the reference angle is upper and
lower bounded with the value that came for it in the original bus() table.  The V section of x is lower and
upper-bounded with the corresponding values for VMIN and VMAX in the bus() table.  The Pg and Qg
sections of x are lower and upper-bounded with the corresponding values for PMAX, PMIN, QMAX
and QMIN in the gen() table. The nonlinear constraints are similarly setup so that gp and gq are equality
constraints (zero RHS) and the limits for gsf, gst are taken from the RATE_A column in the branch()
table.

  Example: in the standard solution to case9.m, the voltage angle
  for bus 7 lags the voltage angle in bus 2 by 6.09 degrees.
  We want to limit that lag to 5 degrees at the most.  A linear
  restriction of the form

    Theta(2) - Theta(7) <=  5 degrees

  would do the trick.  We have nb = 9 buses, ng = 3 generators
  and nl = 9 branches.  Therefore the first 9 elements of
  x are bus voltage angles, elements 10:18 are bus voltage magnitudes,
  elements 19:21 are active injections corresponding to the generators
  in buses 1, 2 and 3 (in that order) and elements 22:24 are the
  corresponding reactive injections.  Note that in this case the
  generators in the original data already appear in ascending bus
  order, so no permutation with respect to the original data is
  necessary.  Going back to the angle restriction, we see that
  it can be cast as

   [ 0 1 0 0 0 0 -1 0 0 zeros(1,nb+ng+ng) ] * x  <= 5 degrees

  We can set up the problem as follows:

    A = sparse([1;1], [2;7], [1;-1], 1, 24);
    l = 0;
    u = 5 * pi/180;
    mpopt = mpoption;
    mpopt(11) = 520; % use fmincon with generalized formulation
    opf('case9', mpopt)

 which indeed restricts the angular separation to 5 degrees.
 NOTE: in this example, the total number of variables is 24,
 but if there are any piece wise-linear cost functions, there
 may be additional "helper" variables used by the solver and
 in that case the number of columns in A may need to be
 larger.  Read the next section to understand how this is done.
 If all costs are polynomial, however, no extra variables
 are needed.

Piece wise-linear convex cost formulation using constrained cost variables

The generalized formulation allows for an easy way to model any piece wise-linear costs.  Such a cost
curve looks like
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This nondifferentiable cost can be modeled using one helper cost variable for each such cost curve and
additional restrictions on this variable and Pg, one restriction for each segment of the curve.  The restric-
tions build a convex "basin" and they are equivalent to saying that the cost variable must lie in the epi-
graph of the cost curve.  When the cost is minimized, the cost variable will be pushed against this basin.
If the helper cost variable is "y", then the contribution of the generators' cost to the total cost is exactly y,
and in the above case the two restrictions needed are

 1) 001 )( cxPmy g +−≥  (y must lie above the first segment)

 2) 112 )( cxPmy g +−≥  (y must lie above the second segment)

(here, m1 and m2 are the slopes of the two segments) and of course, the box restrictions on Pg:  Pmin ≤ Pg
≤Pmax . The additive part of the cost contributed by this generator is y.

In the generalized OPF formulation, the capability to accept general linear constraints is used to introduce
new variables "y" (one for each piecewise-linear cost in the problem) and constraints (one for each cost
segment in the problem).  The function that builds the coefficient matrix for the restrictions is makeAy.m
. Because a linear cost on the y variables is also required, the last row of the matrix that is actually passed
on to the solver is expected to contain not some linear restriction coefficients but a linear cost vector on
[x;y] .  In normal use this is done automatically inside fmincopf.m (or mopf.m when using MINOS) and
the users need not worry about this.  If the user wants to add linear constraints of his or her own, how-
ever, it is necessary to know in advance how many y variables there are so that the coefficient matrix for
the user's constraints have a matching number of columns to multiply [x;y].  In that case it is necessary to
know how many piece wise linear cost curves (both active and reactive) there are for the generators that
are online.  That is equal to the number of "y" variables.
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Curtailable and price-sensitive loads

In general, price-sensitive loads can be modeled as negative real power injections with associated costs.
The current test is that if PMIN <  PMAX <= 0 for a generator, then it is really a price-sensitive load.  If a
load has a demand curve like the following

so that it will consume zero if the price is higher than price2, P1 if the price is less than price2 but higher
than price1, and P2 if the price is equal or lower than price1. Then, when the load is is considered as a
negative injection what is wanted is that it is  dispatched at zero if the price is greater than price2, at -P1 if
the price is higher than price1 but lower than price2, and at -P2 if the price is equal to or lower than
price1. This suggests the following piece wise-linear cost curve:
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Note that this assumes that the demand blocks can be "split"; if the price trigger is reached half-way
through the block, the load must accept the partial block.  Otherwise, accepting or rejecting whole blocks
really poses a mixed-integer problem, which is not inside the scope of MATPOWER at this time.

When there are price-sensitive loads, the issue of reactive dispatch arises.  If the QMIN/QMAX genera-
tion limits for the generator (really a load) in question are not set to zero, then the algorithm will actually
dispatch the reactive injection to the most convenient value.  This is not normal load behavior
and therefore in the generalized formulation it is assumed that variable loads maintain a constant power
factor.  The mechanism for posing additional general linear constraints is employed to automatically in-
clude restrictions for these injections to keep the ratio of Pg and Qg constant.  This ratio is inferred from
the initial values of PG and QG in the gen() table; thus, it is important to set these appropriately, keeping
in mind that PG is negative and that for normal inductive loads QG should also be negative (a positive
reactive load is a negative reactive injection).

Additional Information on the  Generalized Formulation Structure

The advanced user may need to add linear constraints to the problem and/or linear costs.  Sometimes new
state variables may need to be defined (in addition to x and y discussed before).  And, sometimes the user
may also need to include additional linear costs on some or all of the variables, but in most cases fmin-
copf (or mopf) hide these steps from the user and create certain costs and restrictions automatically. This
creates a conflict between ease of use and generality of the software.  In this section we explain the be-
havior adopted by fmincopf.m and mopf.m when the following factors interact:

a) existence of y variables because of piece wise-linear costs
b) User-provided linear restrictions
  b1) on whatever the existing variables [x;y] are;
  b2) with A having more columns than there are elements
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      in [x;y], thus creating extra variables z and an overall
      optimization vector [x;y;z].

If the user does not provide any additional linear restrictions via the A, l, u parameters, then internally
there are only x and y-type variables; if there are y-type variables for modeling piece wise-linear costs,
then some additional constraints will be constructed to model the cost segments.  If there are
price-sensitive loads (with either polynomial or piece wise-linear costs) then some more constraints will
be added to maintain a constant power factor.

If a user does provide A, l, u parameters to add general linear constraints, then

  a) if the number of columns in A is the same as the number
     of variables in [x;y], the software takes charge of constructing
     any linear cost vector needed for modeling of the piece wise-linear
     costs and it does not expect any user-provided cost row
     in A.

  b) If the number of columns in A is greater than the number of
     elements in [x;y], then it becomes the user's responsibility to
     provide

     b1) the appropriate linear restrictions on y and the Pg, Qg
         sections of the x vector to model each of the segments
         of the piece wise-linear costs as described in section 2;
         this includes both the coefficient matrix and the left
         and right hand sides of the restrictions.
         The function makeAy.m can be used for this, but keep in mind
         that it will return a coefficient matrix that has only
         as many columns as elements in [x;y].  It must be padded
         with enough sparse zero columns on the right to make it
         conformable with [x;y;z] if there are any z variables.

     b2) the appropriate linear cost in the last row of A
         and this includes ANY NECESSARY COST COEFFICIENTS ON THE "y"
         SECTION OF THE COST VECTOR. Note that l and u must still have
         the same number of elements as A has rows but the last elements
         in l and u are meaningless; set them to (-large, +large).

Note that this means that if the user wants to add linear costs on just the [x,y] variables, he or she will
have to create at least one dummy z variable for the interface to provide the user with the opportunity to
specify the linear cost vector.

3.4 Unit Decommitment Algorithm
This section is out-of-date.

(Please see help uopf for a brief description of the current algorithm.)
The standard OPF formulation described in the previous section has no mechanism for completely shut-
ting down generators which are very expensive to operate. Instead they are simply dispatched at their
minimum generation limits. MATPOWER includes a unit decommitment algorithm which allows it to
shut down these expensive units. The algorithm is based on a simplified version of the decommitment
technique proposed in [7].
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The algorithm proceeds as follows:
Step 0: Assume all generators are on-line with all generator limits in place.
Step 1: Solve a normal OPF.
Step 2: If the OPF converged to a feasible solution and the objective function decreased from the previ-

ous iteration (or if this is the first iteration), go to step 3, otherwise go to step 4.
Step 3: Compute a decommitment index for each generator i as follows:

di = fi(Pi ) − λi ⋅Pi

where Pi is generator i’s dispatch computed by the OPF, fi is the cost of operating at Pi, and λi
is the Lagrange multiplier on the real power equality constraint at the bus where generator i is
located. Continue with step 5.

Step 4: Return to the previous commitment and set dk to zero (to eliminate it from consideration).
Step 5: Find the generator k with the smallest decommitment index. If dk is negative, shut down gen-

erator k and return to step 1. If dk is positive, stop.

3.5 MATPOWER Options
MATPOWER uses an options vector to control the many options available. It is similar to the options
vector produced by the foptions function in Matlab’s Optimization Toolbox. The primary difference is
that modifications can be made by option name, as opposed to having to remember the index of each op-
tion. The default MATPOWER options vector is obtained by calling mpoption with no arguments. So,
typing:
>> runopf('case30', mpoption)

is another way to run the OPF solver with the all of the default options.
The MATPOWER options vector controls the following:
• power flow algorithm
• power flow termination criterion
• OPF algorithm
• OPF default algorithms for different cost models
• OPF cost conversion parameters
• OPF termination criterion
• verbose level
• printing of results
The details are given below:

>> help mpoption

 MPOPTION  Used to set and retrieve a MATPOWER options vector.

    opt = mpoption
        returns the default options vector

    opt = mpoption(name1, value1, name2, value2, ...)
        returns the default options vector with new values for up to 7
        options, name# is the name of an option, and value# is the new
        value. Example: options = mpoption('PF_ALG', 2, 'PF_TOL', 1e-4)
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    opt = mpoption(opt, name1, value1, name2, value2, ...)
        same as above except it uses the options vector opt as a base
        instead of the default options vector.

    The currently defined options are as follows:

       idx - NAME, default          description [options]
       ---   -------------          -------------------------------------
    power flow options
        1  - PF_ALG, 1              power flow algorithm
            [   1 - Newton's method                                     ]
            [   2 - Fast-Decoupled (XB version)                         ]
            [   3 - Fast-Decoupled (BX version)                         ]
            [   4 - Gauss Seidel                                        ]
        2  - PF_TOL, 1e-8           termination tolerance on per unit
                                    P & Q mismatch
        3  - PF_MAX_IT, 10          maximum number of iterations for
                                    Newton's method
        4  - PF_MAX_IT_FD, 30       maximum number of iterations for
                                    fast decoupled method
        5  - PF_MAX_IT_GS, 1000     maximum number of iterations for
                                    Gauss-Seidel method
        10 - PF_DC, 0               use DC power flow formulation, for
                                    power flow and OPF      [   0 or 1  ]
    OPF options
        11 - OPF_ALG, 0             algorithm to use for OPF
            [    0 - choose best default solver available in the        ]
            [        following order, 500, 520 then 100/200             ]
            [ Otherwise the first digit specifies the problem           ]
            [ formulation and the second specifies the solver,          ]
            [ as follows, (see the User's Manual for more details)      ]
            [  100 - standard formulation (old), constr                 ]
            [  120 - standard formulation (old), dense LP               ]
            [  140 - standard formulation (old), sparse LP (relaxed)    ]
            [  160 - standard formulation (old), sparse LP (full)       ]
            [  200 - CCV formulation (old), constr                      ]
            [  220 - CCV formulation (old), dense LP                    ]
            [  240 - CCV formulation (old), sparse LP (relaxed)         ]
            [  260 - CCV formulation (old), sparse LP (full)            ]
            [  500 - generalized formulation, MINOS                     ]
            [  520 - generalized formulation, fmincon                   ]
            [ See the User's Manual for details on the formulations.    ]
        12 - OPF_ALG_POLY, 100      default OPF algorithm for use with
                                    polynomial cost functions
                                    (used only if no solver available
                                    for generalized formulation)
        13 - OPF_ALG_PWL, 200       default OPF algorithm for use with
                                    piece-wise linear cost functions
                                    (used only if no solver available
                                    for generalized formulation)
        14 - OPF_POLY2PWL_PTS, 10   number of evaluation points to use
                                    when converting from polynomial to
                                    piece-wise linear costs
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        15 - OPF_NEQ, 0             number of equality constraints
                                    (0 => 2*nb, set by program, not a
                                    user option)
        16 - OPF_VIOLATION, 5e-6    constraint violation tolerance
        17 - CONSTR_TOL_X, 1e-4     termination tol on x for 'constr'
        18 - CONSTR_TOL_F, 1e-4     termination tol on F for 'constr'
        19 - CONSTR_MAX_IT, 0       max number of iterations for 'constr'
                                    [       0 => 2*nb + 150             ]
        20 - LPC_TOL_GRAD, 3e-3     termination tolerance on gradient
                                    for 'LPconstr'
        21 - LPC_TOL_X, 1e-4        termination tolerance on x (min
                                    step size) for 'LPconstr'
        22 - LPC_MAX_IT, 400        maximum number of iterations for
                                    'LPconstr'
        23 - LPC_MAX_RESTART, 5     maximum number of restarts for
                                    'LPconstr'
    output options
        31 - VERBOSE, 1             amount of progress info printed
            [   0 - print no progress info                              ]
            [   1 - print a little progress info                        ]
            [   2 - print a lot of progress info                        ]
            [   3 - print all progress info                             ]
        32 - OUT_ALL, -1            controls printing of results
            [  -1 - individual flags control what prints                ]
            [   0 - don't print anything                                ]
            [       (overrides individual flags, except OUT_RAW)        ]
            [   1 - print everything                                    ]
            [       (overrides individual flags, except OUT_RAW)        ]
        33 - OUT_SYS_SUM, 1         print system summary    [   0 or 1  ]
        34 - OUT_AREA_SUM, 0        print area summaries    [   0 or 1  ]
        35 - OUT_BUS, 1             print bus detail        [   0 or 1  ]
        36 - OUT_BRANCH, 1          print branch detail     [   0 or 1  ]
        37 - OUT_GEN, 0             print generator detail  [   0 or 1  ]
                                    (OUT_BUS also includes gen info)
        38 - OUT_ALL_LIM, -1        control constraint info output
            [  -1 - individual flags control what constraint info prints]
            [   0 - no constraint info (overrides individual flags)     ]
            [   1 - binding constraint info (overrides individual flags)]
            [   2 - all constraint info (overrides individual flags)    ]
        39 - OUT_V_LIM, 1           control output of voltage limit info
            [   0 - don't print                                         ]
            [   1 - print binding constraints only                      ]
            [   2 - print all constraints                               ]
            [   (same options for OUT_LINE_LIM, OUT_PG_LIM, OUT_QG_LIM) ]
        40 - OUT_LINE_LIM, 1        control output of line limit info
        41 - OUT_PG_LIM, 1          control output of gen P limit info
        42 - OUT_QG_LIM, 1          control output of gen Q limit info
        43 - OUT_RAW, 0             print raw data for Perl database
                                    interface code          [   0 or 1  ]
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    other options
        51 - SPARSE_QP, 0           QP solver can handle sparse matrices
                                                            [   0 or 1  ]
        52 - VAR_LOAD_PF, 1         generators with negative PMIN are
                                    treated as demands with constant power
                                    factor (currently only works with MINOS)
                                                            [   0 or 1  ]
    MINOS OPF options
        61 - MNS_FEASTOL, 0 (1E-3)  primal feasibility tolerance,
                                    set to value of OPF_VIOLATION by default
        62 - MNS_ROWTOL, 0  (1E-3)  row tolerance
                                    set to value of OPF_VIOLATION by default
        63 - MNS_XTOL, 0     (1E-3) x tolerance
        64 - MNS_MAJDAMP, 0 (0.5)   major damping parameter
        65 - MNS_MINDAMP, 0 (2.0)   minor damping parameter
        66 - MNS_PENALTY_PARM, 0 (1.0)  penalty parameter
        67 - MNS_MAJOR_IT, 0 (200)  major iterations
        68 - MNS_MINOR_IT, 0 (2500) minor iterations
        69 - MNS_MAX_IT, 0 (2500)   iterations limit
        70 - MNS_VERBOSITY, -1
            [  -1 - controlled by VERBOSE flag (0 or 1 below)           ]
            [   0 - print nothing                                       ]
            [   1 - print only termination status message               ]
            [   2 - print termination status and screen progress        ]
            [   3 - print screen progress, report file (usually fort.9) ]
        71 - MNS_CORE, 1200 * nb + 5000
        72 - MNS_SUPBASIC_LIM, 0 (2*ng) superbasics limit
        73 - MNS_MULT_PRICE, 0 (30) multiple price

A typical usage of the options vector might be as follows:
Get the default options vector:
>> opt = mpoption;

Use the fast-decoupled method to solve power flow:
>> opt = mpoption(opt, 'PF_ALG', 2);

Display only system summary and generator info:
>> opt = mpoption(opt, 'OUT_BUS', 0, 'OUT_BRANCH', 0, 'OUT_GEN', 1);

Show all progress info:
>> opt = mpoption(opt, 'VERBOSE', 3);

Now, run a bunch of power flows using these settings:
>> runpf('case57', opt)

>> runpf('case118', opt)

>> runpf('case300', opt)
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3.6 Summary of the Files
This section is out-of-date.

Documentation files:
README - basic intro to MATPOWER
README.txt - basic intro to MATPOWER, with DOS line endings (for Windows)
docs/CHANGES - modification history of MATPOWER
docs/CHANGES.txt - modification history of MATPOWER, with DOS line endings
docs/manual.pdf - PDF version of the MATPOWER User’s Manual

Input data files:
cdf2matp.m - a stand-alone m-file which reads IEEE CDF formatted

  data and outputs data in MATPOWER's case.m format
case9.m - a 3 generator, 9 bus case
case30.m - a 6 generator, 30 bus case
case57.m - IEEE 57-Bus case
case118.m - IEEE 118-Bus case
case300.m - IEEE 300-Bus case
case9Q.m - case9.m, with costs for reactive generation
case30Q.m - case30.m, with costs for reactive generation
case30pwl.m - case30.m with a piece-wise linear cost function

Source files used by all algorithms:
bustypes.m - lists of buses of type reference, PV or PQ.
dSbus_dV.m - computes partial derivatives for Jacobian
ext2int.m - External to internal (successive) bus numbering.
idx_brch.m - defines column indexes for branch table
idx_bus.m - defines column indexes for bus table
idx_gen.m - defines column indexes for gen table
int2ext.m
makeSbus.m
makeYbus.m - builds Ybus matrix
mpoption.m - sets MATPOWER options
printpf.m - prints output



23

Other source files used by PF (Power Flow):
fdpf.m - implements fast decoupled power flow
newtonpf.m - implements Newton’s method power flow
pfsoln.m
runpf.m - main program for running a power flow
makeB.m

Other source files used by OPF (Optimal Power Flow):
dAbr_dV.m - computes partial derivatives of apparent power flows
dSbr_dV.m - computes partial derivatives of complex power flows
fg_names.m
fun_ccv.m - computes obj fcn and constraints for CCV formulation
fun_std.m - computes obj fcn and constraints for standard formulation
grad_ccv.m - computes gradients for standard formulation
grad_std.m - computes gradients for standard formulation
idx_area.m
idx_cost.m
opf.m - implements main OPF routine
copf.m - front end for constr.m –based solver (algorithms 100 & 200)
opfsoln.m
opf_form.m
opf_slvr.m
poly2pwl.m
pqcost.m
runopf.m - main program for running an optimal power flow
totcost.m - computes cost

The following are used only by the LP-based OPF algorithms:
LPconstr.m
LPeqslvr.m
LPrelax.m
LPsetup.m

The following are used by the generalized-formulation solvers
fmincopf.m - front end for fmincon.m solver (algorithm 520)
makeAy.m - compute restrictions and cost vector for CCV cost model
costfmin.m - cost and cost gradient for generalized formulation
consfmin.m - constraint and gradients of constraints for generalized

  formulation

Other source files used by UOPF (Unit decommitment/OPF):
(all files from OPF, except runopf.m)
uopf.m - implements decommitment heuristic
runuopf.m - main program for running OPF with decommitment algorithm

Files for use with the bpmpd LP/QP-solver:
bpmpd/lp.m - replacement for Optimization Toolbox lp.m
bpmpd/qp.m - replacement for Optimization Toolbox qp.m (used by constr.m)
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Appendix A:  Notes on LP-Solvers for Matlab
This section is out-of-date.

The MATPOWER distribution does not include an LP-solver, however, the Matlab Optimization Toolbox
does include and LP-solver, lp.m, which is based on it’s QP-solver, qp.m. For large sparse problems,
these routines are very slow. Fortunately, there are some third party LP and QP-solvers for MATLAB
with much better performance.
Several LP and QP-solvers have been tested for use in the context of an LP-based OPF. Some of them
we were unable to get to compile on our architecture of choice (Sun Ultra running Solaris 2.5.1) and oth-
ers proved to be less than robust in an OPF context.
Here is a list of the solvers we’ve attempted to use:
• bpmpd - QP-solver from http://www.sztaki.hu/~meszaros/bpmpd/ ($100)

  (Matlab MEX interface by Carlos Murillo <cem14@cornell.edu>)
• lp.m - LP-solver included with Optimization Toolbox (from MathWorks)
• lp_solve - LP-solver from ftp://ftp.ics.ele.tue.nl/pub/lp_solve/ (free)
• loqo - LP-solver from http://www.princeton.edu/~rvdb/ (free)
• sol_qps.m - LP-solver developed at U. of Wisconsin, not publicly available)
Of all of the packages tested, the bpmpd solver, has been the only one which worked reliably for us. It
has proven to be very robust and has exceptional performance. The distribution includes two files lp.m
and qp.m in the bpmpd directory. If bpmpd is installed and these two files are included in your Matlab
path before the Optimization Toolbox routines, they will be used in place of the lp.m and qp.m in the
Toolbox4.
More information about free optimizers is available in "Decision Tree for Optimization Software" main-
tained by Mittenlmonn Hans and P. Spellucci at http://plato.la.asu.edu/guide.html.

Appendix B:  Some General Matlab Performance Notes
The performance bottlenecks in Matlab are different for Matlab 4 and Matlab 5. Here are two observa-
tions from our testing:
• Matlab 4 is slow at executing case.m for large files, Matlab 5 is not.
• Matlab 5 is slow at selecting rows of a large sparse matrix, Matlab 4 is not.
• fmincon.m seems to compute slightly inaccurate shadow prices

                                                
4 Note when using constr in Matlab 5, it doesn’t seem to find the bpmpd replacement for qp.m, although this seems to
work fine under Matlab 4.


