
1

MATPOWER: A Matlab Power System Simulation Package

R. Zimmerman D. Gan
rz10@cornell.edu deqiang@ee.cornell.edu
Power Systems Engineering Research Center (PSERC)
School of Electrical Engineering, Cornell University

INTRODUCTION...1
THE POWER FLOW SOLVER...2
THE OPTIMAL POWER FLOW FORMULATION..2
THE OPTIMIZATION TOOLBOX BASED OPF SOLVER...2
THE LP-BASED OPF SOLVER..2

General Introduction..3
The Sparse Solver..4
The Dense Solver..7

The Formulation of LP Sub-problem..7
Solving the LP Sub-problem..8
Computing KT Multipliers (incomplete)...8

Checking KT Conditions (incomplete)..8
Computing Generation-load Shift Factors (incomplete)..9
The Jacobian Matrix of Load Flow...9
Linearized Formulation of Line Flow...10

TEST RESULTS (INCOMPLETE)..10
THE COMBINED UC-OPF SOLVER (INCOMPLETE)...10
FINAL REMARKS (INCOMPLETE)..10
REFERENCE...10

Introduction

The restructuring of the electric power industry in many parts of the world is creating a need for new analytical as well as
simulation tools. To test new ideas and methodologies for the operation of competitive power systems, researchers need to
have ready access to simulation tools which are easy to use and modify. The MATPOWER package, a set of Matlab m-files
developed by PSERC at Cornell University, is intended as such a tool.

At present, MATPOWER can be used to solve the following problems:

− power flow (based on Newton’s method)
− optimal power flow (using the ‘constr’ function in Matlab’s Optimization Toolbox)
− optimal power flow (using an LP-based approach)
− optimal power flow with a heuristic for turning off expensive generators

Future versions of MATPOWER may include the ability to do:

− economic dispatch
− unit commitment
− combined unit commitment and optimal power flow
− transient stability
− stability-constrained optimal power flow

This note is simply a technical note maintained by the authors describing the details of the algorithms implemented in
MATPOWER. Its purpose is to provide technical details for those interested in modifying or extending the current
functionality.

2

The Power Flow Solver
The power flow solver in MATPOWER is based on a standard full-Jacobian Newton’s method, described in detail in many
textbooks. It does not include any transformer tap changing or feasibility checking. The method for building the Jacobian came
from Chris DeMarco.

We found that it solves the IEEE 300-bus system on our Sun Ultra in under 2 seconds.

The Optimal Power Flow Formulation
The OPF problem is formulated as follows:

Minimize
g gP ,Q

f i∑

S T. . P P P Vgi Li− − =(,)θ 0 (Active power equations)

Q Q Q Vgi Li− − =(,)θ 0 (Reactive power equations)

~
S Sij

f
ij
M≤ (Constraints on apparent power of line flow, from side)

~
S Sij

t
ij
M≤ (Constraints on apparent power of line flow, to side)

V Vi
M≤ (Voltage constraints)

− ≤ −V Vi
m (Voltage constraints)

P Pgi gi
M≤ (Active power generation limits)

− ≤ −P Pgi gi
m (Active power generation limits)

Q Qgi gi
M≤ (Reactive power generation limits)

− ≤ −Q Qgi gi
m (Reactive power generation limits)

The OPF formulation described above is used for both the Optimization Toolbox based OPF and the LP-based OPF. The
objective function of the OPF problem is assumed to be summation of costs of individual generators. The cost of each
generator is expressed in the form of either quadratic function or piece-wise linear curve.

The Optimization Toolbox based OPF Solver
Implementation of the Optimization Toolbox based OPF is quite straightforward. For details, see the file OTopf.m.

The LP-based OPF Solver
In this chapter, we will describe the algorithms implemented in our LP-based OPF solver.

The objective function of the OPF problem is assumed to be summation of costs of individual generators. The cost of each
generator is expressed in the form of either quadratic function or piece-wise linear curve. The quadratic cost function of ith
generator is defined as follows:

f C C P C Pi i i gi i gi= + +0 1 2
2

The piece-wise linear cost function of ith generator is defined as follows (see Fig. 2):

f P Pi i i gi ik ginseg i= + ′ + + ′α β β1 1, ()

3

P P Pgi gi g inseg i= ′ + + ′1 ... , ()

0 ≤ ′ ≤ ′P Pgij gij
M

Where α i is a constant, βij denotes the slope of each linear function, ′Pgij is called segmental power in this note. Note that

the cost curve must be convex, otherwise the solver could get wrong solution. This approach of modeling generator cost
function is called one-segment-one-variable approach [Stott, 1979].

° °
°

°

°

 cost

P’g1 P’g2

Fig. 2 Cost Curve of Generator

General Introduction

LP-based OPF method has been extensively examined, and used in quite a few modern power systems. The algorithm we
coded is perhaps different from that in production-grade software. The major difference is that our algorithm is much simpler.
The reason of doing so is, certainly, to make the OPF solver more re-usable. The flow chart of our solver is demonstrated in
Fig. 3.

Fig. 3 Flow Chart of LP-based OPF Solver

STOP

yes

Check if the solution meets KT Condition

Update solution

Formulate and solve LP sub-problem

Linearize OPF constraints

Run AC load flow

4

The stopping criteria, the selection of starting point, handling infeasibilities, etc. will be explained in the coming version of
this note.

The LP-based OPF solver can not handle OPF problems with quadratic cost function directly. If the cost information of
generators is given by quadratic functions, the quadratic curves will be discretized into piece-wise linear functions in M-file
opf.m. So in this chapter, we assume that the cost of generators is piece-wise linear.

We have developed two variants of LP-based OPF solver, one is called dense solver, and another is sparse solver. In the
algorithm of dense solver, load flow equations are eliminated, so are network voltages. In sparse solver, load flow equations are
preserved. The dense solver is more independent on the performance of LP solver but is less readable, while sparse solver is
more readable but is more dependent on the performance of LP solver. In subsequent text, we will give the details underlying
both solvers.

The Sparse Solver

The algorithm of sparse solver is pretty straightforward. In this section, we will just give the equations of linearized OPF only:

5

Minimize
∆ ∆ ∆ ∆V P , QG G, ,θ ′

() ()β β β β11 11 1 1 1 1∆ ∆ ∆ ∆′ + + ′ + + ′ + + ′P P P Pg i g nsegi n gn ni g n n s e g i..., () , ()

S.T. ∆Pgi - ∆ ′∑ PGij
j

nseg i()

= 0 (i=1, …,ng)

∂
∂

P

V
Vi

j
j

j

n

∆
=

∑
1

+
∂
∂θ

θ
Pi

j
j

j

n

∆
=
∑

2

 - ∆Pgi = 0 (i=1, …, nb)

∂
∂

Q

V
Vi

j
j

j

n

∆
=

∑
1

+
∂
∂θ

θ
Qi

j
j

j

n

∆
=
∑

2

- ∆QGi = 0 (i=1, …, nb)

∂
∂

~
S
V

Vl
f

jj

n

j
=

∑
1

∆ +
∂
∂θ

θ
~
S l

f

jj

n

j
=
∑

2

∆ ≤ S Sl
M

l− 0 (l=1,.., nl)

∂
∂

~
S
V

Vl
t

jj

n

j
=

∑
1

∆ +
∂
∂θ

θ
~
Sl

t

jj

n

j
=
∑

2

∆ ≤ S Sl
M

l− 0 (l=1,.., nl)

∆Vi ≤ V VM
i− 0

− ∆Vi ≤ V Vi
m0 −

∆PGi ≤ P PGi
M

Gi− 0 (i=1, …, ng)

− ∆PGi ≤ P PGi Gi
m0 − (i=1, …, ng)

∆QGi ≤ Q QGi
M

Gi− 0 (i=1, …, ng)

−∆QGi ≤ Q QGi Gi
m0 − (i=1, …, ng)

∆ ′PGij ≤ ′ − ′P PGij
M

Gij
0 (i=1, …, ng, j=1, …, nseg(i))

− ′∆PGij ≤ ′PGij
0 (i=1, …, ng, j=1, …, nseg(i))

6

The above formulation can be expressed in matrix form as follows:

MIN []0 0 0 0 β
θ
V

P

Q

P

g

g

g′























S.T. ∆Pg - M ppg g⋅ ′∆P = 0

J VPV ref, ⋅∆ + JP refθ θ, ⋅∆ − ⋅E Pref gref∆ , = 0

J VPV ⋅∆ + JPθ θ⋅ - ∆Pg = 0

J VQV ⋅∆ + JQθ θ⋅ - ∆Q g = 0

∂

∂

~
S

V
V

f

⋅∆ +
∂

∂θ
θ

~
S f

⋅∆ ≤ S SM − 0

∂
∂

~
S

V
V

t

⋅∆ +
∂
∂θ

θ
~
St

⋅∆ ≤ S SM − 0

∆V ≤ V VM − 0

−∆V ≤ V V0 − m

∆Pg ≤ P Pg
M

g− 0

−∆Pg ≤ P Pg g
m0 −

∆Q g ≤ Q Qg
M

g− 0

−∆Q g ≤ Q Qg g
m0 −

- ′Pg
0 ≤ ∆ ′Pg ≤ ′ − ′P Pg

M
g

0

- ∆ ≤ ∆Pg ≤ ∆ (Step size constraints)

- ∆ ≤ ∆Q g ≤ ∆ (Step size constraints)

Note: E J Jref PV ref P ref, ,, ,θ are the rows corresponding to reference bus.

7

The Dense Solver

The Formulation of LP Sub-problem

The voltage variables and load flow equations in sparse formulation can be eliminated based on:

∆
∆

∆
∆

V J J

J J
E

E

P

Q
PV P

QV Q

g

gθ
θ

θ









 =






























−1
0

0
.

∆
∆

∆
∆

V G G

G G

P

Q
g

gθ








 =




















11 12

21 22

[]∆
∆
∆

∆
∆

∆
∆

~
~ ~ ~ ~

S
S
V

S V S
V

S G G

G G

V
T T

P

Q
g

g
=





















 =






























 =











∂
∂

∂
∂θ θ

∂
∂

∂
∂θ θ

11 12

21 22
1 2

M J Gjg ref= ⋅

The well-known dense formulation of LP sub-problem is as follows:

MIN []0 0 β
∆
∆
∆

P

Q

P

g

g

g′

















S.T. ∆Pg - M ppg g⋅ ′∆P = 0

(),M IjgP ref− ⋅∆Pg + M jgQ g, ⋅∆Q = 0 (Iref: the ref row of unit matrix)

T Pf
g1 ⋅∆ + T Qf

g2
⋅∆ ≤ S SM − 0

T Pt
g1 ⋅∆ + T Qt

g2 ⋅∆ ≤ S SM − 0

G g11 ⋅∆P + G g12 ⋅∆Q ≤ V VM − 0

- G g11 ⋅∆P - G g12 ⋅∆Q ≤ V V0 − m

∆Pg ≤ P Pg
M

g− 0

−∆Pg ≤ P Pg g
m0 −

∆Q g ≤ Q Qg
M

g− 0

−∆Q g ≤ Q Qg g
m0 −

- ′Pg
0 ≤ ∆ ′Pg ≤ ′ − ′P Pg

M
g

0

- ∆ ≤ ∆Pg ≤ ∆

- ∆ ≤ ∆Q g ≤ ∆

8

Solving the LP Sub-problem

It is well recognized that only a few constraints in a typical OPF problem are binding. Based on this observation, the so-called
Iterative Constraint Search [B. Stott, 1979] is employed in our code to solve LP sub-problem. We will explain the algorithm
in detail in coming version of our note.

Computing KT Multipliers (incomplete)

Since load flow equations do not appear explicitly in the dense LP sub-problem, so we can not get KT multipliers
corresponding to load flow equations directly from LP solver, we have to compute them. Before we explain how to compute
KT multipliers, let us recall what conditions optimal solution and KT multipliers meet. Applying the Kuhn-Tucker condition
directly to a LP problem, we have:

A c

Ax b

A

A x

c

b

T

T

λ

λ

= −
=




















 =

−









0

0

where A is composed of the binding terms of coefficients matrix A of a LP problem. The above formula is the basis we
compute KT multipliers. Let us rewrite the constraints of sparse LP formulation as:

− + =
− + =

+ =









E u J x

Eu Jx

Du Bx S

P1 1 0

0
~

Where: u contains controllable variables, x contains state variables V and θ . Matrix D and B jointly denote a sub-
matrix of sparse linearized LP matrix. The sub-matrix is composed of the binding rows of the inequality constraints. Binding
constraints is identified after LP is solved.

Since A cT λ = − , it follows:

J J B

E E D

T T T

T T T
1

1

1 0

− −




























= −










λ
λ
µ

β

We are only interested in the first equation, that is,

J J BT T T
1 1 0λ λ µ+ + =

Variable λ1 and µ are provided by LP solver (the dual vector). Solving the above equation, we get λ .

Checking KT Conditions (incomplete)

()L f P g hi g i i i i= ′ + +∑ ∑ ∑λ µ

∂
∂

β λ µ µ
L

Pgij
ij ij ij

u
ij
l

′
= − − − = 0

9

∂
∂

λ λ µ µ
L

Pgi
i
trans

i
lf

i
u

i
l= − − − + = 0

∂
∂

λ µ µ
L

Qgi
i
lf

i
u

i
l= − − + = 0

∂
∂

λ
∂
∂

µ µ µ
∂
∂

µ
∂
∂

L

V

h

V

S

V

S

Vi k
k

k

i
i
u

i
l

k
k
s k

f

i k
k
s k

t

i

= − − + − − =∑ ∑ ∑
~ ~

0

∂
∂θ

λ ∂ θ
∂θ

µ
∂

∂θ
µ

∂
∂θ

L P V S S
i

s
f

s
t

= − − =∑ ∑ ∑(,)
~ ~

0

Computing Generation-load Shift Factors (incomplete)

This M-file is not available to users.

J J

J J V

P

Q
P PV

Q QV

θ

θ

θ







 ⋅









 =











∆
∆

∆
∆

J J V P

J J V
P PV

Q QV

θ

θ

θ
θ

∆ ∆ ∆
∆ ∆

+ =
+ =



 0

()∆ ∆ ∆P J J J J JP PV QV Q= − = ′−
θ θ θ θ1

∆ ∆P X H J Pij ij ij= = ⋅ ′−θ / 1

Matrix H J⋅ ′−1 is known as matrix of generation-load shift factor.

The Jacobian Matrix of Load Flow

()P V V V G Bi j
j

NB

ij ij ij ij(,) cos sinθ θ θ= +
=

∑
1

()Q V V V G Bi j
j

NB

ij ij ij ij(,) sin cosθ θ θ= −
=

∑
1

()∂
∂θ

θ θ
P

VV G B j ii

j
i j ij ij ij ij= − ≠sin cos ()∂

∂θ
θ θ

Q
VV G B j ii

j
i j ij ij ij ij= − + ≠cos sin

()∂
∂θ

θ θ
P

V V G B

Q B V

i

i
i j

j i j i
ij ij ij ij

i ii i

= − −

= − −
⊆ ≠
∑

,

sin cos

2

()∂
∂θ

θ θ
Q

V V G B

P G V

i

i
i j

j i j i
ij ij ij ij

i ii i

= +

= −
⊆ ≠
∑

,

cos sin

2

()∂
∂

θ θ
P
V

V G B j ii

j
i ij ij ij ij= + ≠cos sin ()∂

∂
θ θ

Q
V

V G B j ii

j
i ij ij ij ij= − ≠sin cos

10

()
()

∂
∂

θ θ
P
V

V G B V G

V
P G V

i

i
j

j i j i
ij ij ij ij i ii

i
i ii i

= + +

= +

⊆ ≠
∑

,

cos sin 2

1 2

()
()

∂
∂

θ θ
Q
V

V G B V B

V
Q B V

i

i
j

j i j i
ij ij ij ij i ii

i
i ii i

= − −

= −

⊆ ≠
∑

,

sin cos 2

1 2

Linearized Formulation of Line Flow

()() ()S
R jX

V VV j j

R jX

V jVV VV

R X
R jXij

i i j i i j j i i j ij i j ij=
−
+

=
− − +

+
=

− −
+

−V
V V^

i
i j

2 2

2 2

cos sin cos sin sin cosθ θ θ θ θ θ

()
P

R V VV VV X

R Xij

i i j ij i j ij
=

− −

+

2

2 2

cos sinθ θ ()
Q

RVV X V VV

R Xij
i j ij i i j ij= −

+ −
+

sin cosθ θ2

2 2

∂
∂

θ θP

V

R V V V X

R X
ij

i

i j ij j ij=
− −

+
(cos) sin2

2 2

()∂
∂

θ θQ

V

RV X V V

R X
ij

i

j ij i j ij= −
+ −

+
sin cos2

2 2

∂
∂

θ θP

V

RV V X

R X
ij

j

i ij i ij=
− −

+
cos sin

2 2

∂
∂

θ θQ

V

RV XV

R X
ij

j

i ij i ij= −
−
+

sin cos
2 2

∂
∂θ

θ θP RVV VV X

R X
ij

i

i j ij i j ij=
−
+

sin cos
2 2

∂
∂θ

θ θQ RVV XVV

R X
ij

i

i j ij i j ij= −
+
+

cos sin
2 2

∂
∂θ

θ θP RVV VV X

R X
ij

j

i j ij i j ij=−
−
+

sin cos
2 2

∂
∂θ

θ θQ RVV XVV

R X
ij

j

i j ij i j ij=
+
+

cos sin
2 2

~S P Qij ij ij= +2 2
∂
∂

∂
∂

∂
∂

~S

V
P

P

V
Q

Q

V
ij

i
ij

ij

i
ij

ij

i

= +2 20 0

Test Results (incomplete)

The Combined UC-OPF Solver (incomplete)

Final Remarks (incomplete)

Reference

O. Alsac, J. Bright, M. Prais, B. Stott, “Further Developments in LP-based Optimal Power Flow”, IEEE Trans. On Power
Systems, vol. 5, no. 3, 1990, pp. 697-711

B. Stott, J.L. Marino, O. Alsac, “Review of Linear Programming Applied to Power System Rescheduling”, 1979 PICA, pp
142-154

